Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400 098, India.
J Pept Sci. 2010 Aug;16(8):383-91. doi: 10.1002/psc.1250.
Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide, or GIP), a 42-amino acid incretin hormone, modulates insulin secretion in a glucose-concentration-dependent manner. Its insulinotropic action is highly dependent on glucose concentration that surmounts the hypoglycemia side effects associated with current therapy. In order to develop a GIP-based anti-diabetic therapy, it is essential to establish the 3D structure of the peptide and study its interaction with the GIP receptor (GIPR) in detail. This will give an insight into the GIP-mediated insulin release process. In this article, we report the solution structure of GIP(1-42, human)NH(2) deduced by NMR and the interaction of the peptide with the N-terminus of GIPR using molecular modelling methods. The structure of GIP(1-42, human)NH(2) in H(2)O has been investigated using 2D-NMR (DQF-COSY, TOCSY, NOESY, (1)H-(13)C HSQC) experiments, and its conformation was built by constrained MD simulations with the NMR data as constraints. The peptide in H(2)O exhibits an alpha-helical structure between residues Ser8 and Asn39 with some discontinuity at residues Gln29 to Asp35; the helix is bent at Gln29. This bent gives the peptide an 'L' shape that becomes more pronounced upon binding to the receptor. The interaction of GIP with the N-terminus of GIPR was modelled by allowing GIP to interact with the N-terminus of GIPR under a series of decreasing constraints in a molecular dynamics simulation, culminating with energy minimization without application of any constraints on the system. The canonical ensemble obtained from the simulation was subjected to a detailed energy analysis to identify the peptide-protein interaction patterns at the individual residue level. These interaction energies shed some light on the binding of GIP with the GIPR N-terminus in a quantitative manner.
葡萄糖依赖性胰岛素促分泌多肽(抑胃肽,或 GIP),一种 42 个氨基酸的肠促胰岛素激素,以葡萄糖浓度依赖的方式调节胰岛素分泌。其胰岛素促分泌作用高度依赖于葡萄糖浓度,这克服了与当前治疗相关的低血糖副作用。为了开发基于 GIP 的抗糖尿病治疗方法,必须确定该肽的 3D 结构,并详细研究其与 GIP 受体(GIPR)的相互作用。这将深入了解 GIP 介导的胰岛素释放过程。在本文中,我们报告了通过 NMR 推断出的 GIP(1-42,人)NH2 的溶液结构,以及使用分子建模方法研究该肽与 GIPR 的 N 端相互作用的结果。通过二维 NMR(DQF-COSY、TOCSY、NOESY、(1)H-(13)C HSQC)实验研究了 GIP(1-42,人)NH2 在 H2O 中的结构,并通过使用 NMR 数据作为约束的约束 MD 模拟构建其构象。该肽在 H2O 中表现出一种螺旋结构,在残基 Ser8 和 Asn39 之间,在残基 Gln29 到 Asp35 处存在一些不连续性;螺旋在 Gln29 处弯曲。这种弯曲使肽呈“L”形,在与受体结合时变得更加明显。通过允许 GIP 在分子动力学模拟中与 GIPR 的 N 端相互作用,并在一系列逐渐降低的约束下进行模拟,最终在不对系统施加任何约束的情况下进行能量最小化,来模拟 GIP 与 GIPR N 端的相互作用。从模拟中获得的正则系综随后进行详细的能量分析,以确定单个残基水平的肽-蛋白相互作用模式。这些相互作用能量以定量的方式阐明了 GIP 与 GIPR N 端的结合。