Institut National de la Santé et de la Recherche Médicale, U858, Université Paul Sabatier (Toulouse III), Toulouse Cedex 4, France.
Mol Pharmacol. 2010 Apr;77(4):547-58. doi: 10.1124/mol.109.060111. Epub 2010 Jan 8.
Glucose-dependent insulinotropic polypeptide receptor (GIPR), a member of family B of the G-protein coupled receptors, is a potential therapeutic target for which discovery of nonpeptide ligands is highly desirable. Structure-activity relationship studies indicated that the N-terminal part of glucose-dependent insulinotropic polypeptide (GIP) is crucial for biological activity. Here, we aimed at identification of residues in the GIPR involved in functional interaction with N-terminal moiety of GIP. A homology model of the transmembrane core of GIPR was constructed, whereas a three-dimensional model of the complex formed between GIP and the N-terminal extracellular domain of GIPR was taken from the crystal structure. The latter complex was docked to the transmembrane domains of GIPR, allowing in silico identification of putative residues of the agonist binding/activation site. All mutants were expressed at the surface of human embryonic kidney 293 cells as indicated by flow cytometry and confocal microscopy analysis of fluorescent GIP binding. Mutation of residues Arg183, Arg190, Arg300, and Phe357 caused shifts of 76-, 71-, 42-, and 16-fold in the potency to induce cAMP formation, respectively. Further characterization of these mutants, including tests with alanine-substituted GIP analogs, were in agreement with interaction of Glu3 in GIP with Arg183 in GIPR. Furthermore, they strongly supported a binding mode of GIP to GIPR in which the N-terminal moiety of GIP was sited within transmembrane helices (TMH) 2, 3, 5, and 6 with biologically crucial Tyr1 interacting with Gln224 (TMH3), Arg300 (TMH5), and Phe357 (TMH6). These data represent an important step toward understanding activation of GIPR by GIP, which should facilitate the rational design of therapeutic agents.
葡萄糖依赖性胰岛素释放多肽受体(GIPR)是 G 蛋白偶联受体家族 B 的成员,是一个潜在的治疗靶点,非常需要发现非肽配体。结构-活性关系研究表明,葡萄糖依赖性胰岛素释放多肽(GIP)的 N 端部分对于生物活性至关重要。在这里,我们旨在确定 GIPR 中与 GIP N 端部分发生功能相互作用的残基。构建了 GIPR 跨膜核心的同源模型,而 GIP 与 GIPR N 端细胞外结构域形成的复合物的三维模型则取自晶体结构。将后者复合物对接至 GIPR 的跨膜结构域,允许在计算机中鉴定激动剂结合/激活位点的假定残基。所有突变体均如流式细胞术和荧光 GIP 结合的共聚焦显微镜分析所示在人胚肾 293 细胞表面表达。突变残基 Arg183、Arg190、Arg300 和 Phe357 分别导致诱导 cAMP 形成的效力移位 76、71、42 和 16 倍。对这些突变体的进一步表征,包括用丙氨酸取代的 GIP 类似物进行的测试,与 GIP 中的 Glu3 与 GIPR 中的 Arg183 相互作用一致。此外,它们强烈支持 GIP 与 GIPR 的结合模式,其中 GIP 的 N 端部分位于跨膜螺旋(TMH)2、3、5 和 6 内,生物上至关重要的 Tyr1 与 Gln224(TMH3)、Arg300(TMH5)和 Phe357(TMH6)相互作用。这些数据代表了理解 GIP 激活 GIPR 的重要一步,这将有助于治疗剂的合理设计。