Suppr超能文献

靶向不可成药蛋白质组:我梦想中的小分子。

Targeting the undruggable proteome: the small molecules of my dreams.

作者信息

Crews Craig M

机构信息

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.

出版信息

Chem Biol. 2010 Jun 25;17(6):551-5. doi: 10.1016/j.chembiol.2010.05.011.

Abstract

Biologically active small molecules have long proven useful in the exploration of cell biology. Although many early compounds were by-products of drug development efforts, recent increased small molecule screening efforts in academia have expanded the repertoire of biological processes investigated to include areas of biology that are not of immediate pharmaceutical interest. Many of these new bioassays score for small molecule-induced phenotypic changes at the cellular or even organismal level and thus have been described as "chemical genetic" screens. However, this analogy with traditional genetic screens is misleading; although each gene has roughly an equivalent chance of being mutated in a traditional genetic screen, the amount of "proteomic space" that a chemical genetics approach can reach using current small molecule libraries is considerably smaller. Thus, new chemical biology methodologies are needed to target the remaining "undruggable proteome" with small druglike molecules.

摘要

长期以来,生物活性小分子在细胞生物学探索中已被证明是有用的。尽管许多早期化合物是药物开发努力的副产品,但最近学术界小分子筛选工作的增加,扩大了所研究的生物过程的范围,包括那些并非直接具有制药意义的生物学领域。许多这些新的生物测定法在细胞甚至生物体水平上对小分子诱导的表型变化进行评分,因此被描述为“化学遗传学”筛选。然而,这种与传统遗传筛选的类比具有误导性;虽然在传统遗传筛选中每个基因发生突变的机会大致相等,但使用当前小分子文库的化学遗传学方法能够触及的“蛋白质组空间”量要小得多。因此,需要新的化学生物学方法,用类似药物的小分子靶向剩余的“不可成药蛋白质组”。

相似文献

1
Targeting the undruggable proteome: the small molecules of my dreams.
Chem Biol. 2010 Jun 25;17(6):551-5. doi: 10.1016/j.chembiol.2010.05.011.
2
Advancing the kinase field: new targets and second generation inhibitors.
J Med Chem. 2015 Jan 8;58(1):1. doi: 10.1021/jm5018708. Epub 2014 Dec 9.
3
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
4
Target identification and mechanism of action in chemical biology and drug discovery.
Nat Chem Biol. 2013 Apr;9(4):232-40. doi: 10.1038/nchembio.1199.
5
RNA as a small molecule druggable target.
Bioorg Med Chem Lett. 2017 Dec 1;27(23):5083-5088. doi: 10.1016/j.bmcl.2017.10.052. Epub 2017 Oct 23.
6
Chemical genomics approaches in plant biology.
Methods Mol Biol. 2009;553:345-54. doi: 10.1007/978-1-60327-563-7_18.
7
The why and how of phenotypic small-molecule screens.
Nat Chem Biol. 2013 Apr;9(4):206-9. doi: 10.1038/nchembio.1206.
8
Small molecule probes of cellular pathways and networks.
ACS Chem Biol. 2011 Jan 21;6(1):86-94. doi: 10.1021/cb1002976. Epub 2010 Nov 18.
9
Translating the Genome into Drugs.
Acc Chem Res. 2023 Feb 21;56(4):489-499. doi: 10.1021/acs.accounts.2c00791. Epub 2023 Feb 9.
10
Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes.
Cell Chem Biol. 2024 Dec 19;31(12):2138-2155.e32. doi: 10.1016/j.chembiol.2024.10.005. Epub 2024 Nov 14.

引用本文的文献

1
From Concepts to Inhibitors: A Blueprint for Targeting Protein-Protein Interactions.
Chem Rev. 2025 Jul 23;125(14):6819-6869. doi: 10.1021/acs.chemrev.5c00046. Epub 2025 Jun 24.
2
Targeting Tau Protein with Proximity Inducing Modulators: A New Frontier to Combat Tauopathies.
ACS Pharmacol Transl Sci. 2025 Feb 10;8(3):654-672. doi: 10.1021/acsptsci.4c00733. eCollection 2025 Mar 14.
3
Navigating PROTACs in Cancer Therapy: Advancements, Challenges, and Future Horizons.
Food Sci Nutr. 2025 Feb 1;13(2):e70011. doi: 10.1002/fsn3.70011. eCollection 2025 Feb.
4
Protacs in cancer therapy: mechanisms, design, clinical trials, and future directions.
Drug Deliv Transl Res. 2025 Jun;15(6):1801-1827. doi: 10.1007/s13346-024-01754-z. Epub 2024 Nov 29.
5
A Target Class Ligandability Evaluation of WD40 Repeat-Containing Proteins.
J Med Chem. 2025 Jan 23;68(2):1092-1112. doi: 10.1021/acs.jmedchem.4c02010. Epub 2024 Nov 4.
6
Pin1-Catalyzed Conformation Changes Regulate Protein Ubiquitination and Degradation.
Cells. 2024 Apr 23;13(9):731. doi: 10.3390/cells13090731.
7
Programming interchangeable and reversible heterooligomeric protein self-assembly using a bifunctional ligand.
Chem Sci. 2024 Jan 23;15(8):2975-2983. doi: 10.1039/d3sc05448a. eCollection 2024 Feb 22.
8
Extracellular targeted protein degradation: an emerging modality for drug discovery.
Nat Rev Drug Discov. 2024 Feb;23(2):126-140. doi: 10.1038/s41573-023-00833-z. Epub 2023 Dec 7.
9
Structural principles of peptide-centric chimeric antigen receptor recognition guide therapeutic expansion.
Sci Immunol. 2023 Dec;8(90):eadj5792. doi: 10.1126/sciimmunol.adj5792. Epub 2023 Dec 1.
10
Mapping the Evolution of Activity-Based Protein Profiling: A Bibliometric Review.
Adv Pharm Bull. 2023 Nov;13(4):639-645. doi: 10.34172/apb.2023.082. Epub 2023 May 20.

本文引用的文献

2
Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein.
Nat Biotechnol. 2010 Mar;28(3):256-63. doi: 10.1038/nbt.1608. Epub 2010 Feb 28.
3
PI3K p110delta regulates T-cell cytokine production during primary and secondary immune responses in mice and humans.
Blood. 2010 Mar 18;115(11):2203-13. doi: 10.1182/blood-2009-07-232330. Epub 2010 Jan 15.
4
Involvement of phosphoinositide 3-kinase gamma in angiogenesis and healing of experimental myocardial infarction in mice.
Circ Res. 2010 Mar 5;106(4):757-68. doi: 10.1161/CIRCRESAHA.109.207449. Epub 2010 Jan 7.
5
Lessons from 60 years of pharmaceutical innovation.
Nat Rev Drug Discov. 2009 Dec;8(12):959-68. doi: 10.1038/nrd2961.
6
Review article: high-throughput affinity-based technologies for small-molecule drug discovery.
J Biomol Screen. 2009 Dec;14(10):1157-64. doi: 10.1177/1087057109350114.
7
Synthesis at the interface of chemistry and biology.
J Am Chem Soc. 2009 Sep 9;131(35):12497-515. doi: 10.1021/ja9026067.
8
Design, synthesis and selection of DNA-encoded small-molecule libraries.
Nat Chem Biol. 2009 Sep;5(9):647-54. doi: 10.1038/nchembio.211. Epub 2009 Aug 2.
9
Systematizing serendipity for cardiovascular drug discovery.
Circulation. 2009 Jul 21;120(3):255-63. doi: 10.1161/CIRCULATIONAHA.108.824177.
10
Bruton's tyrosine kinase revealed as a negative regulator of Wnt-beta-catenin signaling.
Sci Signal. 2009 May 26;2(72):ra25. doi: 10.1126/scisignal.2000230.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验