Macke Jakob H, Wichmann Felix A
Max-Planck-Institut für biologische Kybernetik, Tübingen, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Germany.
J Vis. 2010 May 1;10(5):22. doi: 10.1167/10.5.22.
One major challenge in the sensory sciences is to identify the stimulus features on which sensory systems base their computations, and which are predictive of a behavioral decision: they are a prerequisite for computational models of perception. We describe a technique (decision images) for extracting predictive stimulus features using logistic regression. A decision image not only defines a region of interest within a stimulus but is a quantitative template which defines a direction in stimulus space. Decision images thus enable the development of predictive models, as well as the generation of optimized stimuli for subsequent psychophysical investigations. Here we describe our method and apply it to data from a human face classification experiment. We show that decision images are able to predict human responses not only in terms of overall percent correct but also in terms of the probabilities with which individual faces are (mis-) classified by individual observers. We show that the most predictive dimension for gender categorization is neither aligned with the axis defined by the two class-means, nor with the first principal component of all faces-two hypotheses frequently entertained in the literature. Our method can be applied to a wide range of binary classification tasks in vision or other psychophysical contexts.
感官科学中的一个主要挑战是确定感官系统赖以进行计算的刺激特征,以及那些能够预测行为决策的特征:它们是感知计算模型的先决条件。我们描述了一种使用逻辑回归提取预测性刺激特征的技术(决策图像)。决策图像不仅定义了刺激内的感兴趣区域,而且是一个定量模板,它定义了刺激空间中的一个方向。因此,决策图像能够促进预测模型的开发,以及为后续心理物理学研究生成优化刺激。在此,我们描述我们的方法并将其应用于来自人脸分类实验的数据。我们表明,决策图像不仅能够根据总体正确百分比预测人类反应,还能根据个体观察者对各个面部(错误)分类的概率进行预测。我们表明,性别分类中最具预测性的维度既不与由两个类别均值定义的轴对齐,也不与文献中经常提及的所有面部的第一主成分对齐。我们的方法可应用于视觉或其他心理物理学背景下的广泛二元分类任务。