Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
Biochemistry. 2010 Aug 24;49(33):7131-50. doi: 10.1021/bi100687f.
Human plasminogen kringle 3 (hPgn K3) domain contains most elements of the canonical lysine-binding site (LBS) found in other Pgn kringles. However, it does not exhibit affinity for either lysine or structurally related zwitterionic ligands. It has been shown that lysine-binding activity can be engineered via a Lys57 --> Asp mutation [Burgin, J., and Schaller, J. (2009) Cell. Mol. Life Sci. 55, 135]. Using a recombinant construct expressed in Escherichia coli, the three-dimensional solution structure of hPgn K3 was determined via NMR spectroscopy [heavy atom averaged rmsd = 0.35 +/- 0.07 A (backbone) and 0.75 +/- 0.12 A (all)]. The (1)H/(15)N heteronuclear single-quantum correlated (HSQC) spectra for both wild-type K3 and mutated [r(K57D)K3] structures are essentially identical, implying that the two structures are effectively isomorphous. The affinity of r(K57D)K3 for the lysine analogue trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA) was investigated from ligand-induced NMR chemical shift perturbations, which enabled for mapping the binding site on the mutated domain surface. The equilibrium association constant, K(a), was determined to be approximately 5.23 +/- 0.03 mM(-1). Homology modeling combined with in silico docking of lysine-like zwitterionic ligands via AutoDock 4.0 supports functionality of the engineered (K57D)K3 LBS, whose electrostatic focal centers are defined by the Arg36/Arg71 cationic and Asp55/Asp57 anionic pairs. Comparison of K3-type sequences from different vertebrates, including kringles from hedgehog apolipoprotein(a) [Apo(a)] and Apo(a)-related (Arp) sequences, reveals that Lys57 is confined to the hPgn variant. Based on the likely phylogeny and ligand affinities of the homologous domains, it is suggested that the hPgn K3 is unique in that all other K3-type domains, including hedgehog Apo(a) and all Arp domains, except K3(1), are predicted to variously exhibit lysine-binding capability. In Arp K3(1) an Arg residue fills site 72, replacing the key aromatic residue found in other kringles, thus interfering with a requisite kringle-ligand hydrophobic interaction.
人纤溶酶原kringle 3(hPgn K3)结构域包含了其他 Pgn kringles 中发现的典型赖氨酸结合位点(LBS)的大部分元素。然而,它对赖氨酸或结构上相关的两性离子配体没有亲和力。已经表明,赖氨酸结合活性可以通过 Lys57 --> Asp 突变来设计[Burgin, J., and Schaller, J. (2009) Cell. Mol. Life Sci. 55, 135]。使用在大肠杆菌中表达的重组构建体,通过 NMR 光谱学确定了 hPgn K3 的三维溶液结构[重原子平均 rmsd = 0.35 +/- 0.07 A(骨架)和 0.75 +/- 0.12 A(所有)]。野生型 K3 和突变体[r(K57D)K3]结构的(1)H/(15)N 异核单量子相关(HSQC)谱基本相同,这表明这两种结构实际上是同构的。通过配体诱导的 NMR 化学位移扰动研究了 r(K57D)K3 对赖氨酸类似物反式-(氨基甲基)环己烷羧酸(AMCHA)的亲和力,这使得可以在突变体表面上绘制结合位点。平衡结合常数 K(a)确定为约 5.23 +/- 0.03 mM(-1)。同源建模结合通过 AutoDock 4.0 对赖氨酸样两性离子配体进行的计算机对接,支持工程化(K57D)K3 LBS 的功能,其静电焦点由 Arg36/Arg71 阳离子和 Asp55/Asp57 阴离子对定义。比较来自不同脊椎动物的 K3 型序列,包括刺猬载脂蛋白(a)[Apo(a)]和 Apo(a)相关(Arp)序列的kringles,发现 Lys57 仅限于 hPgn 变体。根据同源结构域的可能系统发育和配体亲和力,建议 hPgn K3 是独一无二的,因为所有其他 K3 型结构域,包括刺猬载脂蛋白(a)和所有 Arp 结构域,除了 K3(1)外,都被预测具有不同的赖氨酸结合能力。在 Arp K3(1)中,Arg 残基填充位置 72,取代了其他 kringles 中发现的关键芳香族残基,从而干扰了必需的 kringle-配体疏水性相互作用。