Department of Animal Science, Cornell University, Ithaca, New York 14853, USA.
Antioxid Redox Signal. 2011 Feb 1;14(3):489-503. doi: 10.1089/ars.2010.3416. Epub 2010 Oct 19.
Pancreatic islets contain low activities of catalase, selenium-dependent glutathione peroxidase 1 (GPX1), and Cu,Zn-superoxide dismutase 1 (SOD1). Thus, enhancing expression of these enzymes in islets has been unquestionably favored. However, such an attempt has produced variable metabolic outcomes. While β cell-specific overexpression of Sod1 enhanced mouse resistance to streptozotocin-induced diabetes, the same manipulation of catalase aggravated onset of type 1 diabetes in nonobese diabetic mice. Global overexpression of Gpx1 in mice induced type 2 diabetes-like phenotypes. Although knockouts of Gpx1 and Sod1 each alone or together decreased pancreatic β cell mass and plasma insulin concentrations, these knockouts improved body insulin sensitivity to different extents. Pancreatic duodenal homeobox 1, forkhead box A2, and uncoupling protein 2 are three key regulators of β cell mass, insulin synthesis, and glucose-stimulated insulin secretion. Phenotypes resulted from altering GPX1 and/or SOD1 were partly mediated through these factors, along with protein kinase B and c-jun terminal kinase. A shifted reactive oxygen species inhibition of protein tyrosine phosphatases in insulin signaling might be attributed to altered insulin sensitivity. Overall, metabolic roles of antioxidant enzymes in β cells and diabetes depend on body oxidative status and target functions. Revealing regulatory mechanisms for this type of dual role will help prevent potential pro-diabetic risk of antioxidant over-supplementation to humans.
胰岛内过氧化氢酶、硒依赖型谷胱甘肽过氧化物酶 1(GPX1)和铜锌超氧化物歧化酶 1(SOD1)的活性较低。因此,毫无疑问,增强胰岛中这些酶的表达受到了青睐。然而,这种尝试产生了不同的代谢结果。虽然β细胞特异性过表达 Sod1 增强了小鼠对链脲佐菌素诱导的糖尿病的抵抗力,但同样对过氧化氢酶的操作加剧了非肥胖型糖尿病小鼠 1 型糖尿病的发病。在小鼠中过表达 Gpx1 会导致 2 型糖尿病样表型。尽管 Gpx1 和 Sod1 的敲除各自或共同降低了胰腺β细胞数量和血浆胰岛素浓度,但这些敲除在不同程度上改善了机体胰岛素敏感性。胰腺十二指肠同源盒 1、叉头框 A2 和解偶联蛋白 2 是调节β细胞数量、胰岛素合成和葡萄糖刺激胰岛素分泌的三个关键调节因子。改变 GPX1 和/或 SOD1 的表型部分是通过这些因子以及蛋白激酶 B 和 c-jun 末端激酶介导的。胰岛素信号中蛋白质酪氨酸磷酸酶的活性氧抑制作用的改变可能归因于胰岛素敏感性的改变。总的来说,抗氧化酶在β细胞和糖尿病中的代谢作用取决于机体的氧化状态和靶功能。揭示这种双重作用的调节机制将有助于防止抗氧化剂过度补充对人类潜在的促糖尿病风险。