Suppr超能文献

传染病出现和传播的景观遗传学。

The landscape genetics of infectious disease emergence and spread.

机构信息

Division of Ecology and Evolutionary Biology, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK.

出版信息

Mol Ecol. 2010 Sep;19(17):3515-31. doi: 10.1111/j.1365-294X.2010.04679.x. Epub 2010 Jul 7.

Abstract

The spread of parasites is inherently a spatial process often embedded in physically complex landscapes. It is therefore not surprising that infectious disease researchers are increasingly taking a landscape genetics perspective to elucidate mechanisms underlying basic ecological processes driving infectious disease dynamics and to understand the linkage between spatially dependent population processes and the geographic distribution of genetic variation within both hosts and parasites. The increasing availability of genetic information on hosts and parasites when coupled to their ecological interactions can lead to insights for predicting patterns of disease emergence, spread and control. Here, we review research progress in this area based on four different motivations for the application of landscape genetics approaches: (i) assessing the spatial organization of genetic variation in parasites as a function of environmental variability, (ii) using host population genetic structure as a means to parameterize ecological dynamics that indirectly influence parasite populations, for example, gene flow and movement pathways across heterogeneous landscapes and the concurrent transport of infectious agents, (iii) elucidating the temporal and spatial scales of disease processes and (iv) reconstructing and understanding infectious disease invasion. Throughout this review, we emphasize that landscape genetic principles are relevant to infection dynamics across a range of scales from within host dynamics to global geographic patterns and that they can also be applied to unconventional 'landscapes' such as heterogeneous contact networks underlying the spread of human and livestock diseases. We conclude by discussing some general considerations and problems for inferring epidemiological processes from genetic data and try to identify possible future directions and applications for this rapidly expanding field.

摘要

寄生虫的传播本质上是一个空间过程,通常嵌入在物理复杂的景观中。因此,传染病研究人员越来越多地从景观遗传学的角度来阐明驱动传染病动态的基本生态过程的机制,并理解依赖于空间的种群过程与宿主和寄生虫内遗传变异的地理分布之间的联系,这并不奇怪。当宿主和寄生虫的遗传信息越来越多时,结合它们的生态相互作用,可以为预测疾病的出现、传播和控制模式提供见解。在这里,我们基于应用景观遗传学方法的四个不同动机综述了该领域的研究进展:(i)评估寄生虫遗传变异的空间组织作为环境变异性的函数,(ii)利用宿主种群遗传结构作为参数化生态动态的一种手段,这些生态动态间接影响寄生虫种群,例如基因流和穿过异质景观的运动途径以及传染性病原体的同时运输,(iii)阐明疾病过程的时间和空间尺度,以及(iv)重建和理解传染病的入侵。在整篇综述中,我们强调景观遗传学原理与从宿主动力学到全球地理模式的一系列范围内的感染动态相关,并且它们也可以应用于非常规的“景观”,例如人类和牲畜疾病传播所基于的异质接触网络。最后,我们讨论了从遗传数据推断流行病学过程的一些一般考虑因素和问题,并试图确定这个快速发展领域的可能未来方向和应用。

相似文献

1
The landscape genetics of infectious disease emergence and spread.
Mol Ecol. 2010 Sep;19(17):3515-31. doi: 10.1111/j.1365-294X.2010.04679.x. Epub 2010 Jul 7.
3
Infecting epidemiology with genetics: a new frontier in disease ecology.
Trends Ecol Evol. 2009 Jan;24(1):21-30. doi: 10.1016/j.tree.2008.08.008. Epub 2008 Nov 21.
4
Prediction and Prevention of Parasitic Diseases Using a Landscape Genomics Framework.
Trends Parasitol. 2017 Apr;33(4):264-275. doi: 10.1016/j.pt.2016.10.008. Epub 2016 Nov 16.
5
Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics.
Evol Appl. 2018 Jul 28;11(10):1763-1778. doi: 10.1111/eva.12678. eCollection 2018 Dec.
6
The geography of malaria genetics in the Democratic Republic of Congo: A complex and fragmented landscape.
Soc Sci Med. 2015 May;133:233-41. doi: 10.1016/j.socscimed.2014.10.037. Epub 2014 Oct 19.
7
Navigating the pitfalls and promise of landscape genetics.
Mol Ecol. 2016 Feb;25(4):849-63. doi: 10.1111/mec.13527.
8
Parasites, ecosystems and sustainability: an ecological and complex systems perspective.
Int J Parasitol. 2005 Jun;35(7):725-32. doi: 10.1016/j.ijpara.2005.03.002. Epub 2005 Apr 8.
9
Population genetics and molecular epidemiology or how to "débusquer la bête".
Infect Genet Evol. 2007 Mar;7(2):308-32. doi: 10.1016/j.meegid.2006.07.003. Epub 2006 Sep 1.
10
Gene flow and adaptive potential in a generalist ectoparasite.
BMC Evol Biol. 2018 Jun 19;18(1):99. doi: 10.1186/s12862-018-1205-2.

引用本文的文献

1
evolution and emergence are associated with land use change.
Ecol Monogr. 2025 Feb;95(1):e1641. doi: 10.1002/ecm.1641.
2
3
Badger Ecology, Bovine Tuberculosis, and Population Management: Lessons from the Island of Ireland.
Transbound Emerg Dis. 2024 Jan 16;2024:8875146. doi: 10.1155/2024/8875146. eCollection 2024.
4
High Diversity and Low Genetic Differentiation Among Geographic Populations of in Western Canada.
Animals (Basel). 2025 Feb 18;15(4):578. doi: 10.3390/ani15040578.
5
Ecological drivers of evolution of swine influenza in the United States: a review.
Emerg Microbes Infect. 2025 Dec;14(1):2455598. doi: 10.1080/22221751.2025.2455598. Epub 2025 Jan 28.
6
Identifying gene-level mechanisms of successful dispersal of during El Niño events.
Microb Genom. 2024 Nov;10(11). doi: 10.1099/mgen.0.001317.
7
A link between evolution and society fostering the UN sustainable development goals.
Evol Appl. 2024 Jun 14;17(6):e13728. doi: 10.1111/eva.13728. eCollection 2024 Jun.
9
Population genomics of diarrheagenic Escherichia coli uncovers high connectivity between urban and rural communities in Ecuador.
Infect Genet Evol. 2023 Sep;113:105476. doi: 10.1016/j.meegid.2023.105476. Epub 2023 Jun 29.

本文引用的文献

1
Phylogeography takes a relaxed random walk in continuous space and time.
Mol Biol Evol. 2010 Aug;27(8):1877-85. doi: 10.1093/molbev/msq067. Epub 2010 Mar 4.
2
Evolution of MRSA during hospital transmission and intercontinental spread.
Science. 2010 Jan 22;327(5964):469-74. doi: 10.1126/science.1182395.
3
Contrasting mtDNA diversity and population structure in a direct-developing marine gastropod and its trematode parasites.
Mol Ecol. 2009 Nov;18(22):4591-603. doi: 10.1111/j.1365-294X.2009.04388.x. Epub 2009 Oct 21.
4
Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan.
Mol Ecol. 2009 Dec;18(23):4757-74. doi: 10.1111/j.1365-294X.2009.04384.x. Epub 2009 Oct 13.
5
Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases.
Nat Rev Microbiol. 2009 Nov;7(11):813-21. doi: 10.1038/nrmicro2219. Epub 2009 Oct 12.
6
Bayesian phylogeography finds its roots.
PLoS Comput Biol. 2009 Sep;5(9):e1000520. doi: 10.1371/journal.pcbi.1000520. Epub 2009 Sep 25.
7
Evidence for regular ongoing introductions of mosquito disease vectors into the Galapagos Islands.
Proc Biol Sci. 2009 Nov 7;276(1674):3769-75. doi: 10.1098/rspb.2009.0998. Epub 2009 Aug 12.
10
Evolutionary analysis of the dynamics of viral infectious disease.
Nat Rev Genet. 2009 Aug;10(8):540-50. doi: 10.1038/nrg2583.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验