Suppr超能文献

乳腺 X 线摄影图像质量:预测符合后乳头线标准的模型。

Mammography image quality: model for predicting compliance with posterior nipple line criterion.

机构信息

Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Australia.

出版信息

Eur J Radiol. 2011 Dec;80(3):713-8. doi: 10.1016/j.ejrad.2010.06.026. Epub 2010 Jul 10.

Abstract

PURPOSE

To develop a model using measurements of pectoral muscle width and length together with the acceptability of the posterior nipple line criteria (PNL) to predict the acceptability of the presentation of the pectoral muscle in the mediolateral oblique view of the breast.

METHOD

A total of 400 mediolateral oblique mammogram images were randomly selected from BreastScreen NSW South West, Australia. Measurements of length and width of the pectoral muscle and the acceptability of the pectoral muscle position relative to the PNL were recorded. Data analysis involved logistic regression and ROC analysis to test the predictors of width and length and the performance of the model. The model was then used to predict the outcome of acceptable or unacceptable PNL criterion for each case.

RESULTS

The estimated odds ratio for an increase of 10mm was 1.98 (CI=1.68, 2.34) for the length predictor and 2.14 (CI=1.56, 2.93) for the width predictor. A cut off point of 0.6083 was derived from the training set and applied with the developed model to the test set. The area under the ROC curve was 0.9339 demonstrating an accurate model.

CONCLUSION

This paper describes a model to predict the acceptability of the PNL criterion using the width and length of the pectoral muscle. This model could be used in the automated assessment of image quality which has the potential to enhance the consistency in mammographic image quality evaluation. Optimising image quality contributes to increased accuracy in radiological interpretation, which maximises the early detection of breast cancer and potentially reduces mortality rates.

摘要

目的

开发一种模型,该模型结合胸肌宽度和长度的测量值以及后乳头线标准(PNL)的可接受性,以预测乳房侧斜位中外侧胸肌的外观可接受性。

方法

从澳大利亚新南威尔士州 BreastScreen NSW 西南区随机选择了 400 张侧斜位 mammogram 图像。记录了胸肌的长度和宽度以及胸肌相对于 PNL 的位置的可接受性的测量值。数据分析涉及逻辑回归和 ROC 分析,以测试宽度和长度的预测因子以及模型的性能。然后,该模型用于预测每个病例的可接受或不可接受的 PNL 标准的结果。

结果

长度预测因子的估计优势比为 1.98(CI=1.68,2.34),宽度预测因子的估计优势比为 2.14(CI=1.56,2.93)。从训练集中得出了 0.6083 的截断点,并将其应用于开发的模型中的测试集。ROC 曲线下面积为 0.9339,表明模型准确。

结论

本文描述了一种使用胸肌宽度和长度预测 PNL 标准可接受性的模型。该模型可用于自动评估图像质量,从而有可能提高 mammographic 图像质量评估的一致性。优化图像质量有助于提高放射学解释的准确性,从而最大限度地提高乳腺癌的早期检测,并可能降低死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验