Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA.
Diabetes. 2010 Sep;59(9):2134-44. doi: 10.2337/db10-0233. Epub 2010 Jul 9.
Exercise is an important strategy for the treatment of type 2 diabetes. This is due in part to an increase in glucose transport that occurs in the working skeletal muscles. Glucose transport is regulated by GLUT4 translocation in muscle, but the molecular machinery mediating this process is poorly understood. The purpose of this study was to 1) use a novel imaging system to elucidate the kinetics of contraction-induced GLUT4 translocation in skeletal muscle and 2) determine the function of AMP-activated protein kinase alpha2 (AMPKalpha2) in this process.
Confocal imaging was used to visualize GLUT4-enhanced green fluorescent protein (EGFP) in transfected quadriceps muscle fibers in living mice subjected to contractions or the AMPK-activator AICAR.
Contraction increased GLUT4-EGFP translocation from intracellular vesicle depots to both the sarcolemma and t-tubules with similar kinetics, although translocation was greater with contractions elicited by higher voltage. Re-internalization of GLUT4 did not begin until 10 min after contractions ceased and was not complete until 130 min after contractions. AICAR increased GLUT4-EGFP translocation to both sarcolemma and t-tubules with similar kinetics. Ablation of AMPKalpha2 activity in AMPKalpha2 inactive transgenic mice did not change GLUT4-EGFP's basal localization, contraction-stimulated intracellular GLUT4-EGFP vesicle depletion, translocation, or re-internalization, but diminished AICAR-induced translocation.
We have developed a novel imaging system to study contraction-stimulated GLUT4 translocation in living mice. Contractions increase GLUT4 translocation to the sarcolemma and t-tubules with similar kinetics and do not require AMPKalpha2 activity.
运动是治疗 2 型糖尿病的重要策略。这在一定程度上是由于工作骨骼肌中葡萄糖转运的增加。葡萄糖转运受肌肉中 GLUT4 易位调节,但介导这一过程的分子机制还知之甚少。本研究的目的是:1)使用新型成像系统阐明骨骼肌收缩诱导的 GLUT4 易位的动力学;2)确定 AMP 激活的蛋白激酶 α2(AMPKα2)在该过程中的功能。
在活体小鼠的转染四头肌纤维中,使用共焦成像来可视化 GLUT4 增强型绿色荧光蛋白(EGFP),使其受到收缩或 AMPK 激活剂 AICAR 的作用。
收缩以相似的动力学从细胞内囊泡库增加 GLUT4-EGFP 向肌膜和 T 管的易位,尽管用更高电压引起的收缩易位更大。收缩停止后 10 分钟才开始 GLUT4 的再内化,直到收缩后 130 分钟才完全完成。AICAR 以相似的动力学增加 GLUT4-EGFP 向肌膜和 T 管的易位。在 AMPKα2 无效转基因小鼠中,AMPKα2 活性的消融并没有改变 GLUT4-EGFP 的基础定位、收缩刺激的细胞内 GLUT4-EGFP 囊泡耗竭、易位或再内化,但减少了 AICAR 诱导的易位。
我们已经开发了一种新型成像系统来研究活体小鼠中收缩刺激的 GLUT4 易位。收缩以相似的动力学增加 GLUT4 向肌膜和 T 管的易位,不依赖于 AMPKα2 活性。