Suppr超能文献

多能性中的染色质调控机制。

Chromatin regulatory mechanisms in pluripotency.

机构信息

Institute for Research in Immunology and Cancer, University of Montreal, Montreal H3C 3J7, Quebec, Canada.

出版信息

Annu Rev Cell Dev Biol. 2010;26:503-32. doi: 10.1146/annurev-cellbio-051809-102012.

Abstract

Stem cells of all types are characterized by a stable, heritable state permissive of multiple developmental pathways. The past five years have seen remarkable advances in understanding these heritable states and the ways that they are initiated or terminated. Transcription factors that bind directly to DNA and have sufficiency roles have been most easy to investigate and, perhaps for this reason, are most solidly implicated in pluripotency. In addition, large complexes of ATP-dependent chromatin-remodeling and histone-modification enzymes that have specialized functions have also been implicated by genetic studies in initiating and/or maintaining pluripotency or multipotency. Several of these ATP-dependent remodeling complexes play non-redundant roles, and the esBAF complex facilitates reprogramming of induced pluripotent stem cells. The recent finding that virtually all histone modifications can be rapidly reversed and are often highly dynamic has raised new questions about how histone modifications come to play a role in the steady state of pluripotency. Another surprise from genetic studies has been the frequency with which the global effects of mutations in chromatin regulators can be largely reversed by a single target gene. These genetic studies help define the arena for future mechanistic studies that might be helpful to harness pluripotency for therapeutic goals.

摘要

各种类型的干细胞的特征是一种稳定的、可遗传的状态,允许多种发育途径。在过去的五年中,人们在理解这些可遗传状态以及它们的起始或终止方式方面取得了显著的进展。直接与 DNA 结合并具有充分作用的转录因子最容易被研究,也许正因为如此,它们与多能性的关系最密切。此外,通过遗传研究,在起始和/或维持多能性或多潜能性方面,具有专门功能的大量 ATP 依赖性染色质重塑和组蛋白修饰酶复合物也被牵连在内。其中几个 ATP 依赖性重塑复合物发挥非冗余作用,esBAF 复合物促进诱导多能干细胞的重编程。最近的发现表明,几乎所有的组蛋白修饰都可以迅速逆转,而且通常非常动态,这就提出了新的问题,即组蛋白修饰如何在多能性的稳定状态中发挥作用。遗传研究的另一个惊喜是,染色质调控因子突变的全局效应在很大程度上可以被单个靶基因逆转的频率。这些遗传研究有助于确定未来机制研究的领域,这些研究可能有助于为治疗目的利用多能性。

相似文献

1
Chromatin regulatory mechanisms in pluripotency.
Annu Rev Cell Dev Biol. 2010;26:503-32. doi: 10.1146/annurev-cellbio-051809-102012.
2
An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency.
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5181-6. doi: 10.1073/pnas.0812889106. Epub 2009 Mar 11.
3
TIF1beta regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10926-31. doi: 10.1073/pnas.0907601107. Epub 2010 May 27.
4
DNA and chromatin modification networks distinguish stem cell pluripotent ground states.
Mol Cell Proteomics. 2012 Oct;11(10):1036-47. doi: 10.1074/mcp.M111.011114. Epub 2012 Jul 22.
5
esBAF safeguards Stat3 binding to maintain pluripotency.
Nat Cell Biol. 2011 Aug 1;13(8):886-8. doi: 10.1038/ncb2311.
6
ATP dependent chromatin remodeling enzymes in embryonic stem cells.
Stem Cell Rev Rep. 2010 Mar;6(1):62-73. doi: 10.1007/s12015-010-9120-y.
7
Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation.
Cell Tissue Res. 2008 Jan;331(1):23-9. doi: 10.1007/s00441-007-0536-x. Epub 2007 Nov 15.
9
Role of Oct4 in maintaining and regaining stem cell pluripotency.
Stem Cell Res Ther. 2010 Dec 14;1(5):39. doi: 10.1186/scrt39.
10
An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network.
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5187-91. doi: 10.1073/pnas.0812888106. Epub 2009 Mar 11.

引用本文的文献

1
Research progress of MUC1 in genitourinary cancers.
Cell Mol Biol Lett. 2024 Nov 3;29(1):135. doi: 10.1186/s11658-024-00654-x.
2
Enhancer switching in cell lineage priming is linked to eRNA, Brg1's AT-hook, and SWI/SNF recruitment.
Mol Cell. 2024 May 16;84(10):1855-1869.e5. doi: 10.1016/j.molcel.2024.03.013. Epub 2024 Apr 8.
4
PBRM-1/PBAF-regulated genes in a multipotent progenitor in Caenorhabditis elegans.
G3 (Bethesda). 2024 Mar 6;14(3). doi: 10.1093/g3journal/jkad297.
6
Irf7 regulates the expression of Srg3 and ferroptosis axis aggravated sepsis-induced acute lung injury.
Cell Mol Biol Lett. 2023 Nov 9;28(1):91. doi: 10.1186/s11658-023-00495-0.
7
Dependence on MUC1-C in Progression of Neuroendocrine Prostate Cancer.
Int J Mol Sci. 2023 Feb 13;24(4):3719. doi: 10.3390/ijms24043719.
8
Resetting the epigenome: Methylation dynamics in cancer stem cells.
Front Cell Dev Biol. 2022 Sep 26;10:909424. doi: 10.3389/fcell.2022.909424. eCollection 2022.
9
BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma.
Blood Cancer J. 2022 Jul 19;12(7):110. doi: 10.1038/s41408-022-00704-7.

本文引用的文献

1
Chromatin regulation by Brg1 underlies heart muscle development and disease.
Nature. 2010 Jul 1;466(7302):62-7. doi: 10.1038/nature09130.
2
Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming.
Cell. 2010 Jun 11;141(6):943-55. doi: 10.1016/j.cell.2010.04.037.
4
JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells.
Nature. 2010 Mar 11;464(7286):306-10. doi: 10.1038/nature08788.
5
Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells.
Cell. 2009 Dec 24;139(7):1303-14. doi: 10.1016/j.cell.2009.12.003.
7
Reprogramming towards pluripotency requires AID-dependent DNA demethylation.
Nature. 2010 Feb 25;463(7284):1042-7. doi: 10.1038/nature08752.
10
Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.
Cell. 2009 Sep 4;138(5):1019-31. doi: 10.1016/j.cell.2009.06.049. Epub 2009 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验