Suppr超能文献

叶片二氧化氮吸收与质外体化学、碳/硫同化和植物氮素状况有关。

Leaf nitrogen dioxide uptake coupling apoplastic chemistry, carbon/sulfur assimilation, and plant nitrogen status.

机构信息

College of Life Science, Northeast Forestry University, 26# Hexing Road, Xiangfang District, Harbin 150040, People's Republic of China.

出版信息

Plant Cell Rep. 2010 Oct;29(10):1069-77. doi: 10.1007/s00299-010-0898-5. Epub 2010 Jul 14.

Abstract

Emission and plant uptake of atmospheric nitrogen oxides (NO + NO(2)) significantly influence regional climate change by regulating the oxidative chemistry of the lower atmosphere, species composition and the recycling of carbon and nutrients, etc. Plant uptake of nitrogen dioxide (NO(2)) is concentration-dependent and species-specific, and covaries with environmental factors. An important factor determining NO(2) influx into leaves is the replenishment of the substomatal cavity. The apoplastic chemistry of the substomatal cavity plays crucial roles in NO(2) deposition rates and the tolerance to NO(2), involving the reactions between NO(2) and apoplastic antioxidants, NO(2)-responsive germin-like proteins, apoplastic acidification, and nitrite-dependent NO synthesis, etc. Moreover, leaf apoplast is a favorable site for the colonization by microbes, which disturbs nitrogen metabolism of host plants. For most plant species, NO(2) assimilation in a leaf primarily depends on the nitrate (NO(3) (-)) assimilation pathway. NO(2)-N assimilation is coupled with carbon and sulfur (sulfate and SO(2)) assimilation as indicated by the mutual needs for metabolic intermediates (or metabolites) and the NO(2)-caused changes of key metabolic enzymes such as phosphoenolpyruvate carboxylase (PEPc) and adenosine 5'-phosphosulfate sulfotransferase, organic acids, and photorespiration. Moreover, arbuscular mycorrhizal (AM) colonization improves the tolerance of host plants to NO(2) by enhancing the efficiency of nutrient absorption and translocation and influencing foliar chemistry. Further progress is proposed to gain a better understanding of the coordination between NO(2)-N, S and C assimilation, especially the investigation of metabolic checkpoints, and the effects of photorespiratory nitrogen cycle, diverse PEPc and the metabolites such as cysteine, O-acetylserine (OAS) and glutathione.

摘要

大气氮氧化物(NO + NO2)的排放和植物吸收通过调节低层大气的氧化化学、物种组成和碳及养分的再循环等,显著影响区域气候变化。植物对二氧化氮(NO2)的吸收取决于浓度和物种特异性,并与环境因素有关。决定 NO2 进入叶片的一个重要因素是亚细胞腔的补充。亚细胞腔的质外体化学在 NO2 沉积速率和对 NO2 的耐受性中起着至关重要的作用,涉及 NO2 与质外体抗氧化剂、NO2 响应的类胚根蛋白、质外体酸化以及亚硝酸盐依赖型 NO 合成等之间的反应。此外,叶片质外体是微生物定殖的有利场所,这会干扰宿主植物的氮代谢。对于大多数植物物种,叶片中 NO2 的同化主要依赖于硝酸盐(NO3-)同化途径。NO2-N 的同化与碳和硫(硫酸盐和 SO2)同化相关,这表现为代谢中间产物(或代谢物)的相互需求以及 NO2 引起的关键代谢酶(如磷酸烯醇丙酮酸羧化酶(PEPc)和腺苷 5'-磷酸硫酸转移酶)、有机酸和光呼吸的变化。此外,丛枝菌根(AM)的定殖通过提高养分吸收和转运的效率以及影响叶片化学特性,提高了宿主植物对 NO2 的耐受性。进一步的研究进展旨在更好地理解 NO2-N、S 和 C 同化之间的协调,特别是代谢检查点的研究,以及光呼吸氮循环、多种 PEPc 和半胱氨酸、O-乙酰丝氨酸(OAS)和谷胱甘肽等代谢物的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验