Modelling and Economics Unit, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London, NW9 5EQ, UK.
Adv Exp Med Biol. 2010;673:127-40. doi: 10.1007/978-1-4419-6064-1_9.
Despite the infectious agent that causes tuberculosis having been discovered in 1882, many aspects of the natural history and transmission dynamics of TB are still not fully understood. This is reflected in differences in the structures of mathematical models of TB, which in turn produce differences in the predicted impacts of interventions. Gaining a greater understanding of TB transmission dynamics requires further empirical laboratory and field work, mathematical modelling and interaction between them. Modelling can be used to quantify uncertainty due to different gaps in our knowledge to help identify research priorities. Fortunately, the present moment is an exciting time for TB epidemiology, with rapid progress being made in applying new mathematical modelling techniques, new tools for TB diagnosis and genetic analysis and a growing interest in developing more-effective public-health interventions.
尽管导致结核病的病原体于 1882 年被发现,但结核病的自然史和传播动力学的许多方面仍未被完全理解。这反映在结核病数学模型的结构存在差异,进而导致干预措施的预测效果存在差异。要想更深入地了解结核病的传播动力学,需要进一步开展实验室和实地工作、数学建模以及它们之间的相互作用。建模可以用于量化由于知识上的不同差距而导致的不确定性,以帮助确定研究重点。幸运的是,目前是结核病流行病学的一个令人兴奋的时刻,新的数学建模技术、结核病诊断和遗传分析的新工具以及开发更有效的公共卫生干预措施的兴趣日益浓厚,这些都取得了快速进展。