文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于判别式训练的部件模型的目标检测。

Object detection with discriminatively trained part-based models.

机构信息

Department of Computer Science, University of Chicago, 1100 E. 58th Street, Chicago, IL 60637, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1627-45. doi: 10.1109/TPAMI.2009.167.


DOI:10.1109/TPAMI.2009.167
PMID:20634557
Abstract

We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL data sets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI--SVM in terms of latent variables. A latent SVM is semiconvex, and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.

摘要

我们描述了一个基于多尺度可变形部件模型混合的目标检测系统。我们的系统能够表示高度可变的目标类别,并在 PASCAL 目标检测挑战中取得了最先进的结果。虽然可变形部件模型已经变得非常流行,但它们在 PASCAL 数据集等困难基准上的价值尚未得到证明。我们的系统依赖于使用部分标记数据进行有鉴别力训练的新方法。我们将一种对数据进行挖掘的边缘敏感方法与我们称之为潜在 SVM 的形式主义结合在一起。潜在 SVM 是基于潜在变量对 MI--SVM 的重新表述。潜在 SVM 是半凸的,一旦为正例指定了潜在信息,训练问题就会变成凸的。这导致了一种迭代训练算法,它在为正例固定潜在值和优化潜在 SVM 目标函数之间交替进行。

相似文献

[1]
Object detection with discriminatively trained part-based models.

IEEE Trans Pattern Anal Mach Intell. 2010-9

[2]
Distinct multicolored region descriptors for object recognition.

IEEE Trans Pattern Anal Mach Intell. 2007-7

[3]
Principal axes estimation using the vibration modes of physics-based deformable models.

IEEE Trans Image Process. 2008-6

[4]
Discriminative learning and recognition of image set classes using canonical correlations.

IEEE Trans Pattern Anal Mach Intell. 2007-6

[5]
Efficient sequential correspondence selection by cosegmentation.

IEEE Trans Pattern Anal Mach Intell. 2010-9

[6]
What the back of the object looks like: 3D reconstruction from line drawings without hidden lines.

IEEE Trans Pattern Anal Mach Intell. 2008-3

[7]
Object-based image analysis using multiscale connectivity.

IEEE Trans Pattern Anal Mach Intell. 2005-6

[8]
Sparse representation for coarse and fine object recognition.

IEEE Trans Pattern Anal Mach Intell. 2006-4

[9]
Three-dimensional surface mesh segmentation using curvedness-based region growing approach.

IEEE Trans Pattern Anal Mach Intell. 2007-12

[10]
Local hull-based surface construction of volumetric data from silhouettes.

IEEE Trans Image Process. 2008-8

引用本文的文献

[1]
Automatic Electric Tricycles Trajectory Tracking and Multi-Violation Detection.

Sensors (Basel). 2025-8-19

[2]
Inspection of railway catenary systems using machine learning with domain knowledge integration.

Sci Rep. 2025-8-11

[3]
Learning spatio-temporal context for basketball action pose estimation with a multi-stream network.

Sci Rep. 2025-8-9

[4]
Performance validation of deep-learning-based approach in stool examination.

Parasit Vectors. 2025-8-1

[5]
Mpox lesion counting with semantic and instance segmentation methods.

J Med Imaging (Bellingham). 2025-5

[6]
Vehicle Recognition and Driving Information Detection with UAV Video Based on Improved YOLOv5-DeepSORT Algorithm.

Sensors (Basel). 2025-4-28

[7]
A high precision YOLO model for surface defect detection based on PyConv and CISBA.

Sci Rep. 2025-5-6

[8]
A Color-Based Multispectral Imaging Approach for a Human Detection Camera.

J Imaging. 2025-3-21

[9]
Finding antibodies in cryo-EM maps with CrAI.

Bioinformatics. 2025-5-6

[10]
Crowd counting at the edge using weighted knowledge distillation.

Sci Rep. 2025-4-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索