Department of Computer Science, University of Chicago, 1100 E. 58th Street, Chicago, IL 60637, USA.
IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1627-45. doi: 10.1109/TPAMI.2009.167.
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL data sets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI--SVM in terms of latent variables. A latent SVM is semiconvex, and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.
我们描述了一个基于多尺度可变形部件模型混合的目标检测系统。我们的系统能够表示高度可变的目标类别,并在 PASCAL 目标检测挑战中取得了最先进的结果。虽然可变形部件模型已经变得非常流行,但它们在 PASCAL 数据集等困难基准上的价值尚未得到证明。我们的系统依赖于使用部分标记数据进行有鉴别力训练的新方法。我们将一种对数据进行挖掘的边缘敏感方法与我们称之为潜在 SVM 的形式主义结合在一起。潜在 SVM 是基于潜在变量对 MI--SVM 的重新表述。潜在 SVM 是半凸的,一旦为正例指定了潜在信息,训练问题就会变成凸的。这导致了一种迭代训练算法,它在为正例固定潜在值和优化潜在 SVM 目标函数之间交替进行。
IEEE Trans Pattern Anal Mach Intell. 2010-9
IEEE Trans Pattern Anal Mach Intell. 2007-7
IEEE Trans Image Process. 2008-6
IEEE Trans Pattern Anal Mach Intell. 2007-6
IEEE Trans Pattern Anal Mach Intell. 2010-9
IEEE Trans Pattern Anal Mach Intell. 2008-3
IEEE Trans Pattern Anal Mach Intell. 2005-6
IEEE Trans Pattern Anal Mach Intell. 2006-4
IEEE Trans Pattern Anal Mach Intell. 2007-12
IEEE Trans Image Process. 2008-8
Sensors (Basel). 2025-8-19
Parasit Vectors. 2025-8-1
J Med Imaging (Bellingham). 2025-5
J Imaging. 2025-3-21
Bioinformatics. 2025-5-6
Sci Rep. 2025-4-8