文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于人体检测摄像头的基于颜色的多光谱成像方法。

A Color-Based Multispectral Imaging Approach for a Human Detection Camera.

作者信息

Ono Shuji

机构信息

Fujifilm Corporation, Kaisei 250-8577, Ashigara-kami, Kanagawa, Japan.

出版信息

J Imaging. 2025 Mar 21;11(4):93. doi: 10.3390/jimaging11040093.


DOI:10.3390/jimaging11040093
PMID:40278009
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12028291/
Abstract

In this study, we propose a color-based multispectral approach using four selected wavelengths (453, 556, 668, and 708 nm) from the visible to near-infrared range to separate clothing from the background. Our goal is to develop a human detection camera that supports real-time processing, particularly under daytime conditions and for common fabrics. While conventional deep learning methods can detect humans accurately, they often require large computational resources and struggle with partially occluded objects. In contrast, we treat clothing detection as a proxy for human detection and construct a lightweight machine learning model (multi-layer perceptron) based on these four wavelengths. Without relying on full spectral data, this method achieves an accuracy of 0.95, precision of 0.97, recall of 0.93, and an F1-score of 0.95. Because our color-driven detection relies on pixel-wise spectral reflectance rather than spatial patterns, it remains computationally efficient. A simple four-band camera configuration could thus facilitate real-time human detection. Potential applications include pedestrian detection in autonomous driving, security surveillance, and disaster victim searches.

摘要

在本研究中,我们提出了一种基于颜色的多光谱方法,该方法使用从可见光到近红外范围的四个选定波长(453、556、668和708纳米)来将衣物与背景分离。我们的目标是开发一种支持实时处理的人体检测相机,特别是在白天条件下以及针对常见织物的情况。虽然传统的深度学习方法能够准确地检测人体,但它们通常需要大量的计算资源,并且在处理部分遮挡的物体时存在困难。相比之下,我们将衣物检测作为人体检测的替代方法,并基于这四个波长构建了一个轻量级的机器学习模型(多层感知器)。该方法不依赖于全光谱数据,实现了0.95的准确率、0.97的精确率、0.93的召回率以及0.95的F1分数。由于我们基于颜色的检测依赖于逐像素的光谱反射率而非空间模式,因此在计算上仍然高效。这样一种简单的四波段相机配置能够促进实时人体检测。潜在应用包括自动驾驶中的行人检测、安全监控以及灾害遇难者搜寻。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/0ad804916435/jimaging-11-00093-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/3cb79f9bc77c/jimaging-11-00093-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/0b86dc0a8063/jimaging-11-00093-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/c571220d0974/jimaging-11-00093-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/0789160e950c/jimaging-11-00093-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/626dc2c01ed1/jimaging-11-00093-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/02861915df97/jimaging-11-00093-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/ab3b0243e71e/jimaging-11-00093-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/cefe13738ea2/jimaging-11-00093-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/dd90d7c1b3f4/jimaging-11-00093-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/061dd03164a1/jimaging-11-00093-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/6bd1bb4edd48/jimaging-11-00093-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/eeaceca0185b/jimaging-11-00093-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/c769ef7cbb11/jimaging-11-00093-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/eb3f3dfcfb52/jimaging-11-00093-g014a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/63a127f7efd9/jimaging-11-00093-g015a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/d07c9766060e/jimaging-11-00093-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/bec54816808b/jimaging-11-00093-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/9491976aed20/jimaging-11-00093-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/c6001bd321c3/jimaging-11-00093-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/961d387b8db2/jimaging-11-00093-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/94347a5c2050/jimaging-11-00093-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/1724a958a876/jimaging-11-00093-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/c99e13069d92/jimaging-11-00093-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/64dc37c32419/jimaging-11-00093-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/b5205c80fbee/jimaging-11-00093-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/cb06c24b251e/jimaging-11-00093-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/2ca1decb5a3b/jimaging-11-00093-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/dd9fc55fbfa6/jimaging-11-00093-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/f76489f62662/jimaging-11-00093-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/0ad804916435/jimaging-11-00093-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/3cb79f9bc77c/jimaging-11-00093-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/0b86dc0a8063/jimaging-11-00093-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/c571220d0974/jimaging-11-00093-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/0789160e950c/jimaging-11-00093-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/626dc2c01ed1/jimaging-11-00093-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/02861915df97/jimaging-11-00093-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/ab3b0243e71e/jimaging-11-00093-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/cefe13738ea2/jimaging-11-00093-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/dd90d7c1b3f4/jimaging-11-00093-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/061dd03164a1/jimaging-11-00093-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/6bd1bb4edd48/jimaging-11-00093-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/eeaceca0185b/jimaging-11-00093-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/c769ef7cbb11/jimaging-11-00093-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/eb3f3dfcfb52/jimaging-11-00093-g014a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/63a127f7efd9/jimaging-11-00093-g015a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/d07c9766060e/jimaging-11-00093-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/bec54816808b/jimaging-11-00093-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/9491976aed20/jimaging-11-00093-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/c6001bd321c3/jimaging-11-00093-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/961d387b8db2/jimaging-11-00093-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/94347a5c2050/jimaging-11-00093-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/1724a958a876/jimaging-11-00093-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/c99e13069d92/jimaging-11-00093-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/64dc37c32419/jimaging-11-00093-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/b5205c80fbee/jimaging-11-00093-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/cb06c24b251e/jimaging-11-00093-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/2ca1decb5a3b/jimaging-11-00093-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/dd9fc55fbfa6/jimaging-11-00093-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/f76489f62662/jimaging-11-00093-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/12028291/0ad804916435/jimaging-11-00093-g030.jpg

相似文献

[1]
A Color-Based Multispectral Imaging Approach for a Human Detection Camera.

J Imaging. 2025-3-21

[2]
Snapshot multispectral imaging using a pixel-wise polarization color image sensor.

Opt Express. 2020-11-9

[3]
Design and Development of Large-Band Dual-MSFA Sensor Camera for Precision Agriculture.

Sensors (Basel). 2023-12-22

[4]
Fast visible and extended near-infrared multispectral fundus camera.

J Biomed Opt. 2019-9

[5]
Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics.

Acc Chem Res. 2010-6-15

[6]
Reflectance evaluation of eye fundus structures with a visible and near-infrared multispectral camera.

Biomed Opt Express. 2022-5-19

[7]
Performance Characterization of an Illumination-Based Low-Cost Multispectral Camera.

Sensors (Basel). 2024-8-13

[8]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[9]
Adopting the YOLOv4 Architecture for Low-Latency Multispectral Pedestrian Detection in Autonomous Driving.

Sensors (Basel). 2022-1-30

[10]
Determination of spectral resolutions for multispectral detection of apple bruises using visible/near-infrared hyperspectral reflectance imaging.

Front Plant Sci. 2022-8-29

本文引用的文献

[1]
Smart Textiles for Visible and IR Camouflage Application: State-of-the-Art and Microfabrication Path Forward.

Micromachines (Basel). 2021-6-30

[2]
Snapshot multispectral imaging using a pixel-wise polarization color image sensor.

Opt Express. 2020-11-9

[3]
Influence of Optical Brightening Agent Concentration on Properties of Cotton Fabric Coated with Photochromic Microcapsules Using a Pad-Dry-Cure Process.

Polymers (Basel). 2019-11-21

[4]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[5]
Pedestrian Detection at Day/Night Time with Visible and FIR Cameras: A Comparison.

Sensors (Basel). 2016-6-4

[6]
Object detection with discriminatively trained part-based models.

IEEE Trans Pattern Anal Mach Intell. 2010-9

[7]
Multispectral imaging using compact compound optics.

Opt Express. 2004-4-19

[8]
Thin Observation Module by Bound Optics (TOMBO): Concept and Experimental Verification.

Appl Opt. 2001-4-10

[9]
A MATHEMATICAL THEORY OF ADAPTIVE CONTROL PROCESSES.

Proc Natl Acad Sci U S A. 1959-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索