Department of Computer Science and Engineering, The Pennsylvania State University, 1120 Teaberry Ln 201, State College, PA 16803, USA.
IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1659-72. doi: 10.1109/TPAMI.2009.173.
We present a novel and effective algorithm for affinely skewed rotation symmetry group detection from real-world images. We define a complete skewed rotation symmetry detection problem as discovering five independent properties of a skewed rotation symmetry group: 1) the center of rotation, 2) the affine deformation, 3) the type of the symmetry group, 4) the cardinality of the symmetry group, and 5) the supporting region of the symmetry group in the image. We propose a frieze-expansion (FE) method that transforms rotation symmetry group detection into a simple, 1D translation symmetry detection problem. We define and construct a pair of rotational symmetry saliency maps, complemented by a local feature method. Frequency analysis, using Discrete Fourier Transform (DFT), is applied to the frieze-expansion patterns (FEPs) to uncover the types (cyclic, dihedral, and O2), the cardinalities, and the corresponding supporting regions, concentric or otherwise, of multiple rotation symmetry groups in an image. The phase information of the FEP is used to rectify affinely skewed rotation symmetry groups. Our result advances the state of the art in symmetry detection by offering a unique combination of region-based, feature-based, and frequency-based approaches. Experimental results on 170 synthetic and natural images demonstrate superior performance of our rotation symmetry detection algorithm over existing methods.
我们提出了一种新颖而有效的算法,用于从真实图像中检测仿射倾斜旋转对称群。我们将完整的倾斜旋转对称检测问题定义为发现倾斜旋转对称群的五个独立属性:1)旋转中心,2)仿射变形,3)对称群的类型,4)对称群的阶数,以及 5)对称群在图像中的支持区域。我们提出了一种弗里斯扩张(FE)方法,将旋转对称群检测转化为简单的一维平移对称检测问题。我们定义并构建了一对旋转对称显著图,并通过局部特征方法进行补充。使用离散傅里叶变换(DFT)进行频率分析,以揭示图像中多个旋转对称群的类型(循环、二面体和 O2)、阶数以及相应的支持区域,包括同心或非同心的区域。FEP 的相位信息用于校正仿射倾斜的旋转对称群。我们的结果通过提供基于区域、基于特征和基于频率的方法的独特组合,推进了对称检测的最新技术。在 170 张合成和自然图像上的实验结果表明,我们的旋转对称检测算法优于现有方法。