Wang Qing, Ronneberger Olaf, Burkhardt Hans
Computer Science Department and the Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
IEEE Trans Pattern Anal Mach Intell. 2009 Sep;31(9):1715-22. doi: 10.1109/TPAMI.2009.29.
In this paper, polar and spherical Fourier analysis are defined as the decomposition of a function in terms of eigenfunctions of the Laplacian with the eigenfunctions being separable in the corresponding coordinates. The proposed transforms provide effective decompositions of an image into basic patterns with simple radial and angular structures. The theory is compactly presented with an emphasis on the analogy to the normal Fourier transform. The relation between the polar or spherical Fourier transform and the normal Fourier transform is explored. As examples of applications, rotation-invariant descriptors based on polar and spherical Fourier coefficients are tested on pattern classification problems.
在本文中,极坐标傅里叶分析和球坐标傅里叶分析被定义为函数根据拉普拉斯算子的本征函数进行的分解,这些本征函数在相应坐标中是可分离的。所提出的变换能将图像有效地分解为具有简单径向和角向结构的基本模式。该理论以紧凑的形式呈现,重点在于与普通傅里叶变换的类比。探讨了极坐标或球坐标傅里叶变换与普通傅里叶变换之间的关系。作为应用示例,基于极坐标和球坐标傅里叶系数的旋转不变描述符在模式分类问题上进行了测试。