Suppr超能文献

与缝隙连接相关的耳聋相关的外毛细胞的电活动减弱:耳蜗网络机制的计算机模拟研究。

Reduced electromotility of outer hair cells associated with connexin-related forms of deafness: an in silico study of a cochlear network mechanism.

机构信息

UCL Ear Institute, 332 Gray's Inn Road, London, WC1E 6BT, UK.

出版信息

J Assoc Res Otolaryngol. 2010 Dec;11(4):559-71. doi: 10.1007/s10162-010-0226-3. Epub 2010 Jul 16.

Abstract

Mutations in the GJB2 gene encoding for the connexin 26 (Cx26) protein are the most common source of nonsyndromic forms of deafness. Cx26 is a building block of gap junctions (GJs) which establish electrical connectivity in distinct cochlear compartments by allowing intercellular ionic (and metabolic) exchange. Animal models of the Cx26 deficiency in the organ of Corti seem to suggest that the hearing loss and the degeneration of outer hair cells (OHCs) and inner hair cells is due to failed K(+) and metabolite homeostasis. However, OHCs can develop normally in some mutants, suggesting that the hair cells death is not the universal mechanism. In search for alternatives, we have developed an in silico large scale three-dimensional model of electrical current flow in the cochlea in the small signal, linearised, regime. The effect of mutations was analysed by varying the magnitude of resistive components representing the GJ network in the organ of Corti. The simulations indeed show that reduced GJ conductivity increases the attenuation of the OHC transmembrane potential at frequencies above 5 kHz from 6.1 dB/decade in the wild-type to 14.2 dB/decade. As a consequence of increased GJ electrical filtering, the OHC transmembrane potential is reduced by up to 35 dB at frequencies >10 kHz. OHC electromotility, driven by this potential, is crucial for sound amplification, cochlear sensitivity and frequency selectivity. Therefore, we conclude that reduced OHC electromotility may represent an additional mechanism underlying deafness in the presence of Cx26 mutations and may explain lowered OHC functionality in particular reported Cx26 mutants.

摘要

GJB2 基因突变是导致非综合征性耳聋的最常见原因。Cx26 蛋白是缝隙连接(GJ)的组成部分,通过允许细胞间离子(和代谢物)交换,在不同的耳蜗隔室建立电连接。Cx26 缺乏的动物模型似乎表明,听力损失和外毛细胞(OHCs)和内毛细胞的变性是由于 K+和代谢物稳态的失败。然而,在一些突变体中,OHC 可以正常发育,这表明毛细胞死亡不是普遍的机制。为了寻找替代方法,我们开发了一种在小信号、线性化条件下,在耳蜗内进行电流流动的大规模三维计算模型。通过改变代表 Corti 器官中 GJ 网络的电阻元件的大小来分析突变的影响。模拟确实表明,GJ 电导率降低会增加 OHC 跨膜电位在 5 kHz 以上频率的衰减,从野生型的 6.1 dB/decade 增加到 14.2 dB/decade。由于 GJ 电滤波增加,OHC 跨膜电位在>10 kHz 的频率下降低多达 35 dB。由该电位驱动的 OHC 电活动对于声音放大、耳蜗灵敏度和频率选择性至关重要。因此,我们得出结论,降低 OHC 电活动可能是 Cx26 突变导致耳聋的另一种机制,并可能解释了特别是报道的 Cx26 突变体中降低的 OHC 功能。

相似文献

本文引用的文献

1
A chimera analysis of prestin knock-out mice.一种对prestin基因敲除小鼠的嵌合体分析。
J Neurosci. 2009 Sep 23;29(38):12000-8. doi: 10.1523/JNEUROSCI.1651-09.2009.
5
Generation of the endocochlear potential: a biophysical model.内淋巴电位的产生:一种生物物理模型。
Biophys J. 2008 Apr 15;94(8):L64-6. doi: 10.1529/biophysj.107.128082. Epub 2008 Jan 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验