Division of Biology, Imperial College London, South Kensington, London, UK.
FEMS Microbiol Rev. 2010 Sep;34(5):797-827. doi: 10.1111/j.1574-6976.2010.00240.x. Epub 2010 Jun 9.
The bacterial phage shock protein (Psp) response functions to help cells manage the impacts of agents impairing cell membrane function. The system has relevance to biotechnology and to medicine. Originally discovered in Escherichia coli, Psp proteins and homologues are found in Gram-positive and Gram-negative bacteria, in archaea and in plants. Study of the E. coli and Yersinia enterocolitica Psp systems provides insights into how membrane-associated sensory Psp proteins might perceive membrane stress, signal to the transcription apparatus and use an ATP-hydrolysing transcription activator to produce effector proteins to overcome the stress. Progress in understanding the mechanism of signal transduction by the membrane-bound Psp proteins, regulation of the psp gene-specific transcription activator and the cell biology of the system is presented and discussed. Many features of the action of the Psp system appear to be dominated by states of self-association of the master effector, PspA, and the transcription activator, PspF, alongside a signalling pathway that displays strong conditionality in its requirement.
细菌噬菌体休克蛋白(Psp)反应有助于细胞应对破坏细胞膜功能的物质的影响。该系统与生物技术和医学有关。最初在大肠杆菌中发现的 Psp 蛋白及其同源物存在于革兰氏阳性和革兰氏阴性细菌、古菌和植物中。对大肠杆菌和肠炎沙门氏菌 Psp 系统的研究提供了有关膜相关感应 Psp 蛋白如何感知膜应激、向转录装置发出信号以及利用 ATP 水解转录激活因子产生效应蛋白以克服应激的见解。介绍和讨论了对膜结合 Psp 蛋白信号转导机制、psp 基因特异性转录激活因子的调控以及该系统的细胞生物学的理解进展。Psp 系统的许多作用特征似乎主要由主效应物 PspA 和转录激活因子 PspF 的自缔合状态以及信号通路决定,该信号通路在其需求方面具有很强的条件性。