Junglas Benedikt, Hudina Esther, Schönnenbeck Philipp, Ritter Ilona, Heddier Anja, Santiago-Schübel Beatrix, Huesgen Pitter F, Schneider Dirk, Sachse Carsten
Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
Department of Biology, Heinrich Heine University, Düsseldorf, Germany.
Nat Struct Mol Biol. 2025 Jan;32(1):23-34. doi: 10.1038/s41594-024-01359-7. Epub 2024 Aug 16.
Eukaryotic members of the endosome sorting complex required for transport-III (ESCRT-III) family have been shown to form diverse higher-order assemblies. The bacterial phage shock protein A (PspA) has been identified as a member of the ESCRT-III superfamily, and PspA homo-oligomerizes to form rod-shaped assemblies. As observed for eukaryotic ESCRT-III, PspA forms tubular assemblies of varying diameters. Using electron cryo-electron microscopy, we determined 61 Synechocystis PspA structures and observed in molecular detail how the structural plasticity of PspA rods is mediated by conformational changes at three hinge regions in the monomer and by the fixed and changing molecular contacts between protomers. Moreover, we reduced and increased the structural plasticity of PspA rods by removing the loop connecting helices α3/α4 and the addition of nucleotides, respectively. Based on our analysis of PspA-mediated membrane remodeling, we suggest that the observed mode of structural plasticity is a prerequisite for the biological function of ESCRT-III members.
转运所需内体分选复合物III(ESCRT-III)家族的真核成员已被证明能形成多种高阶组装体。细菌噬菌体休克蛋白A(PspA)已被鉴定为ESCRT-III超家族的成员,并且PspA同型寡聚化形成杆状组装体。正如在真核ESCRT-III中观察到的那样,PspA形成了不同直径的管状组装体。利用冷冻电子显微镜,我们确定了61种集胞藻PspA结构,并从分子细节上观察到PspA杆的结构可塑性是如何由单体中三个铰链区的构象变化以及原体之间固定和变化的分子接触所介导的。此外,我们分别通过去除连接螺旋α3/α4的环和添加核苷酸来降低和增加PspA杆的结构可塑性。基于我们对PspA介导的膜重塑的分析,我们认为观察到的结构可塑性模式是ESCRT-III成员生物学功能的先决条件。