Graduate Program for Nanomedical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Project for Medical Sciences and Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
Brain Korea 21 Project for Medical Sciences and Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
J Control Release. 2010 Nov 20;148(1):75-82. doi: 10.1016/j.jconrel.2010.06.027. Epub 2010 Jul 15.
For effective cancer gene therapy, systemic administration of tumor-targeting adenoviral (Ad) complexes is critical for delivery to both primary and metastatic lesions. Electrospinning was used to generate nanocomplexes of Ad, chitosan, poly(ethylene glycol) (PEG), and folic acid (FA) for effective FA receptor-expressing tumor-specific transduction. The chemical structure of the Ad/chitosan-PEG-FA nanocomplexes was characterized by NMR and FT-IR, and the diameter and surface charge were analyzed by dynamic light scattering and zeta potentiometry, respectively. The average size of Ad/chitosan-PEG-FA nanocomplexes was approximately 140 nm, and the surface charge was 2.1 mV compared to -4.9 mV for naked Ad. Electron microscopy showed well-dispersed, individual Ad nanocomplexes without aggregation or degradation. Ad/chitosan nanocomplexes retained biological activity without impairment of the transduction efficiency of naked Ad. The transduction efficiency of Ad/chitosan-PEG-FA was increased as a function of FA ratio in FA receptor-expressing KB cells, but not in FA receptor-negative U343 cells, demonstrating FA receptor-targeted viral transduction. In addition, the transduction efficiency of Ad/chitosan-PEG-FA was 57.2% higher than chitosan-encapsulated Ad (Ad/chitosan), showing the superiority of FA receptor-mediated endocytosis for viral transduction. The production of inflammatory cytokine, IL-6 from macrophages was significantly reduced by Ad/chitosan-PEG-FA nanocomplexes, implying the potential for use in systemic administration. These results clearly demonstrate that cancer cell-targeted viral transduction by Ad/chitosan-PEG-FA nanocomplexes can be used effectively for metastatic tumor treatment with reduced immune reaction against Ad.
为了实现有效的癌症基因治疗,将肿瘤靶向腺病毒(Ad)复合物系统地递送到原发性和转移性病变对于治疗至关重要。本文使用静电纺丝技术生成了 Ad、壳聚糖、聚乙二醇(PEG)和叶酸(FA)的纳米复合物,以实现对表达 FA 受体的肿瘤的特异性转导。通过 NMR 和 FT-IR 对 Ad/壳聚糖-PEG-FA 纳米复合物的化学结构进行了表征,并通过动态光散射和电泳光散射分别分析了直径和表面电荷。Ad/壳聚糖-PEG-FA 纳米复合物的平均粒径约为 140nm,表面电荷为 2.1mV,而裸 Ad 的表面电荷为-4.9mV。电子显微镜显示,Ad 纳米复合物分散良好,没有聚集或降解。与裸 Ad 相比,Ad/壳聚糖纳米复合物保留了生物活性,而不影响裸 Ad 的转导效率。Ad/壳聚糖-PEG-FA 的转导效率随着 FA 受体表达的 KB 细胞中 FA 比例的增加而增加,但在 FA 受体阴性的 U343 细胞中没有增加,表明该复合物具有 FA 受体靶向的病毒转导能力。此外,与壳聚糖包封的 Ad(Ad/壳聚糖)相比,Ad/壳聚糖-PEG-FA 的转导效率提高了 57.2%,表明 FA 受体介导的内吞作用对于病毒转导具有优越性。Ad/壳聚糖-PEG-FA 纳米复合物可显著降低巨噬细胞中炎症细胞因子 IL-6 的产生,这意味着其具有用于系统给药的潜力。这些结果清楚地表明,Ad/壳聚糖-PEG-FA 纳米复合物对癌细胞的靶向病毒转导可用于治疗转移性肿瘤,同时减少了对 Ad 的免疫反应。