Suppr超能文献

真菌和酵母细胞壁的进化。

On the evolution of fungal and yeast cell walls.

机构信息

Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.

出版信息

Yeast. 2010 Aug;27(8):479-88. doi: 10.1002/yea.1787.

Abstract

Recent developments in genomics and proteomics provide evidence that yeast and other fungal cell walls share a common origin. The fibrous component of yeast cell walls usually consists of beta-glucan and/or chitin. N-glycosylated proteins form an amorphous, cross-linking matrix as well as fibres on the outer surfaces of the walls. While the enzymes responsible for cross-linking walls into covalent complexes are conserved, the wall-resident proteins have diversified rapidly. These cell wall proteins are usually members of multi-gene families, and paralogues are often subject to gene silencing through epigenetic mechanisms and environmentally induced expression regulation. Comparative studies of protein sequences reveal that there has been fast sequence divergence of the Saccharomyces sexual agglutinins, potentially serving as a driver for yeast speciation. In addition, cell wall proteins show an unusually high content of tandem and non-tandem repeats, and a high frequency of changes in the number of repeats both among paralogues and among orthologues from conspecific strains. The rapid diversification and regulated expression of yeast cell wall proteins help yeast cells to respond to different stimuli and adapt them to diverse biotic and abiotic environments.

摘要

基因组学和蛋白质组学的最新发展为酵母和其他真菌细胞壁具有共同起源提供了证据。酵母细胞壁的纤维成分通常由β-葡聚糖和/或几丁质组成。糖基化蛋白在细胞壁的外表面形成无定形交联基质以及纤维。虽然负责将细胞壁交联成共价复合物的酶是保守的,但壁驻留蛋白已经迅速多样化。这些细胞壁蛋白通常是多基因家族的成员,并且通过表观遗传机制和环境诱导的表达调控,旁系同源物经常受到基因沉默的影响。蛋白质序列的比较研究表明,酿酒酵母性凝集素的序列快速分化,可能是酵母种形成的驱动力。此外,细胞壁蛋白显示出串联和非串联重复的异常高含量,以及旁系同源物和同种菌株的直系同源物之间重复数的变化频率都很高。酵母细胞壁蛋白的快速多样化和调控表达有助于酵母细胞对不同刺激做出反应,并使它们适应不同的生物和非生物环境。

相似文献

1
On the evolution of fungal and yeast cell walls.
Yeast. 2010 Aug;27(8):479-88. doi: 10.1002/yea.1787.
2
Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi.
FEMS Yeast Res. 2010 May;10(3):225-43. doi: 10.1111/j.1567-1364.2009.00589.x. Epub 2009 Oct 15.
3
The Fungal Cell Wall: Structure, Biosynthesis, and Function.
Microbiol Spectr. 2017 May;5(3). doi: 10.1128/microbiolspec.FUNK-0035-2016.
5
Structural base for the transfer of GPI-anchored glycoproteins into fungal cell walls.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22061-22067. doi: 10.1073/pnas.2010661117. Epub 2020 Aug 24.
6
Cell walls of filamentous fungi - challenges and opportunities for biotechnology.
Appl Microbiol Biotechnol. 2025 May 24;109(1):125. doi: 10.1007/s00253-025-13512-3.
7
10
Yeast and fungal cell-wall polysaccharides can self-assemble in vitro into an ultrastructure resembling in vivo yeast cell walls.
Microscopy (Oxf). 2013 Jun;62(3):327-39. doi: 10.1093/jmicro/dfs076. Epub 2012 Nov 16.

引用本文的文献

1
Auxotrophy-based curation improves the consensus genome-scale metabolic model of yeast.
Synth Syst Biotechnol. 2024 Jul 30;9(4):861-870. doi: 10.1016/j.synbio.2024.07.006. eCollection 2024 Dec.
2
Spent Brewer's Yeast Lysis Enables a Approach in the Beer Industry.
Int J Mol Sci. 2024 Nov 25;25(23):12655. doi: 10.3390/ijms252312655.
3
The relationship between cell density and cell count differs among yeast species.
MicroPubl Biol. 2024 May 23;2024. doi: 10.17912/micropub.biology.001215. eCollection 2024.
4
DectiSomes: C-type lectin receptor-targeted liposomes as pan-antifungal drugs.
Adv Drug Deliv Rev. 2023 May;196:114776. doi: 10.1016/j.addr.2023.114776. Epub 2023 Mar 17.
5
Saccharomyces cerevisiae as a tool for deciphering Hsp90 molecular chaperone function.
Essays Biochem. 2023 Sep 13;67(5):781-795. doi: 10.1042/EBC20220224.
6
Reliable Approach for Pure Yeast Cell Wall Protein Isolation from Yeast Cells.
ACS Omega. 2022 Aug 15;7(34):29702-29713. doi: 10.1021/acsomega.2c02176. eCollection 2022 Aug 30.
7
Flow cytometric resolution of yeast is affected by enzymatic treatment and culture media.
FEBS Open Bio. 2022 Sep;12(9):1623-1633. doi: 10.1002/2211-5463.13456. Epub 2022 Aug 2.
8
Cell-Cell Mating Interactions: Overview and Potential of Single-Cell Force Spectroscopy.
Int J Mol Sci. 2022 Jan 20;23(3):1110. doi: 10.3390/ijms23031110.
10
o-Vanillin, a promising antifungal agent, inhibits Aspergillus flavus by disrupting the integrity of cell walls and cell membranes.
Appl Microbiol Biotechnol. 2021 Jun;105(12):5147-5158. doi: 10.1007/s00253-021-11371-2. Epub 2021 Jun 4.

本文引用的文献

1
A screen for deficiencies in GPI-anchorage of wall glycoproteins in yeast.
Yeast. 2010 Aug;27(8):583-96. doi: 10.1002/yea.1797.
2
Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi.
FEMS Yeast Res. 2010 May;10(3):225-43. doi: 10.1111/j.1567-1364.2009.00589.x. Epub 2009 Oct 15.
3
Structure and function of glycosylated tandem repeats from Candida albicans Als adhesins.
Eukaryot Cell. 2010 Mar;9(3):405-14. doi: 10.1128/EC.00235-09. Epub 2009 Oct 9.
5
Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi.
Annu Rev Genet. 2009;43:1-24. doi: 10.1146/annurev-genet-102108-134156.
6
Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence.
FEMS Yeast Res. 2009 Oct;9(7):1013-28. doi: 10.1111/j.1567-1364.2009.00541.x. Epub 2009 Jun 22.
8
Coding repeat instability in the FLO11 gene of Saccharomyces yeasts.
Yeast. 2008 Dec;25(12):879-89. doi: 10.1002/yea.1642.
9
the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin.
PLoS Pathog. 2008 Nov;4(11):e1000217. doi: 10.1371/journal.ppat.1000217. Epub 2008 Nov 21.
10
FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast.
Cell. 2008 Nov 14;135(4):726-37. doi: 10.1016/j.cell.2008.09.037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验