Smukalla Scott, Caldara Marina, Pochet Nathalie, Beauvais Anne, Guadagnini Stephanie, Yan Chen, Vinces Marcelo D, Jansen An, Prevost Marie Christine, Latgé Jean-Paul, Fink Gerald R, Foster Kevin R, Verstrepen Kevin J
FAS Center for Systems Biology, Harvard University, Northwest Labs, Cambridge, MA 02138, USA.
Cell. 2008 Nov 14;135(4):726-37. doi: 10.1016/j.cell.2008.09.037.
The budding yeast, Saccharomyces cerevisiae, has emerged as an archetype of eukaryotic cell biology. Here we show that S. cerevisiae is also a model for the evolution of cooperative behavior by revisiting flocculation, a self-adherence phenotype lacking in most laboratory strains. Expression of the gene FLO1 in the laboratory strain S288C restores flocculation, an altered physiological state, reminiscent of bacterial biofilms. Flocculation protects the FLO1 expressing cells from multiple stresses, including antimicrobials and ethanol. Furthermore, FLO1(+) cells avoid exploitation by nonexpressing flo1 cells by self/non-self recognition: FLO1(+) cells preferentially stick to one another, regardless of genetic relatedness across the rest of the genome. Flocculation, therefore, is driven by one of a few known "green beard genes," which direct cooperation toward other carriers of the same gene. Moreover, FLO1 is highly variable among strains both in expression and in sequence, suggesting that flocculation in S. cerevisiae is a dynamic, rapidly evolving social trait.
出芽酵母,即酿酒酵母,已成为真核细胞生物学的一个典范。在此我们表明,通过重新审视絮凝现象(大多数实验室菌株所缺乏的一种自我黏附表型),酿酒酵母也是合作行为进化的一个模型。实验室菌株S288C中FLO1基因的表达恢复了絮凝现象,这是一种改变了的生理状态,让人联想到细菌生物膜。絮凝保护表达FLO1的细胞免受多种压力,包括抗菌剂和乙醇。此外,FLO1(+)细胞通过自我/非自我识别避免被不表达flo1的细胞利用:FLO1(+)细胞优先彼此黏附,而不考虑基因组其余部分的遗传相关性。因此,絮凝是由少数已知的“绿胡须基因”之一驱动的,这些基因指导与同一基因的其他载体进行合作。此外,FLO1在菌株之间的表达和序列方面高度可变,这表明酿酒酵母中的絮凝是一种动态的、快速进化的社会特征。