García Raúl, Botet Javier, Rodríguez-Peña José Manuel, Bermejo Clara, Ribas Juan Carlos, Revuelta José Luis, Nombela César, Arroyo Javier
Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
BMC Genomics. 2015 Sep 5;16(1):683. doi: 10.1186/s12864-015-1879-4.
The fungal cell wall forms a compact network whose integrity is essential for cell morphology and viability. Thus, fungal cells have evolved mechanisms to elicit adequate adaptive responses when cell wall integrity (CWI) is compromised. Functional genomic approaches provide a unique opportunity to globally characterize these adaptive mechanisms. To provide a global perspective on these CWI regulatory mechanisms, we developed chemical-genomic profiling of haploid mutant budding yeast cells to systematically identify in parallel those genes required to cope with stresses interfering the cell wall by different modes of action: β-1,3 glucanase and chitinase activities (zymolyase), inhibition of β-1,3 glucan synthase (caspofungin) and binding to chitin (Congo red).
Measurement of the relative fitness of the whole collection of 4786 haploid budding yeast knock-out mutants identified 222 mutants hypersensitive to caspofungin, 154 mutants hypersensitive to zymolyase, and 446 mutants hypersensitive to Congo red. Functional profiling uncovered both common and specific requirements to cope with different cell wall damages. We identified a cluster of 43 genes highly important for the integrity of the cell wall as the common "signature of cell wall maintenance (CWM)". This cluster was enriched in genes related to vesicular trafficking and transport, cell wall remodeling and morphogenesis, transcription and chromatin remodeling, signal transduction and RNA metabolism. Although the CWI pathway is the main MAPK pathway regulating cell wall integrity, the collaboration with other signal transduction pathways like the HOG pathway and the invasive growth pathway is also required to cope with the cell wall damage depending on the nature of the stress. Finally, 25 mutant strains showed enhanced caspofungin resistance, including 13 that had not been previously identified. Only three of them, wsc1Δ, elo2Δ and elo3Δ, showed a significant decrease in β-1,3-glucan synthase activity.
This work provides a global perspective about the mechanisms involved in cell wall stress adaptive responses and the cellular functions required for cell wall integrity. The results may be useful to uncover new potential antifungal targets and develop efficient antifungal strategies by combination of two drugs, one targeting the cell wall and the other interfering with the adaptive mechanisms.
真菌细胞壁形成一个紧密的网络,其完整性对于细胞形态和活力至关重要。因此,当细胞壁完整性(CWI)受到损害时,真菌细胞已经进化出引发适当适应性反应的机制。功能基因组学方法为全面表征这些适应性机制提供了独特的机会。为了全面了解这些CWI调节机制,我们开发了单倍体突变芽殖酵母细胞的化学基因组分析,以系统地并行鉴定那些应对通过不同作用方式干扰细胞壁的应激所需的基因:β-1,3葡聚糖酶和几丁质酶活性(溶壁酶)、β-1,3葡聚糖合酶的抑制(卡泊芬净)以及与几丁质的结合(刚果红)。
对4786个单倍体芽殖酵母敲除突变体的整个文库进行相对适应性测量,鉴定出222个对卡泊芬净敏感的突变体、154个对溶壁酶敏感的突变体和446个对刚果红敏感的突变体。功能分析揭示了应对不同细胞壁损伤的共同和特定需求。我们鉴定出一组对细胞壁完整性非常重要的43个基因,作为共同的“细胞壁维持(CWM)特征”。该组基因在与囊泡运输和转运、细胞壁重塑和形态发生、转录和染色质重塑、信号转导和RNA代谢相关的基因中富集。虽然CWI途径是调节细胞壁完整性的主要MAPK途径,但根据应激的性质,还需要与其他信号转导途径(如HOG途径和侵袭性生长途径)协作来应对细胞壁损伤。最后,25个突变菌株表现出增强的卡泊芬净抗性,包括13个以前未鉴定的菌株。其中只有三个,wsc1Δ、elo2Δ和elo3Δ,显示β-1,3-葡聚糖合酶活性显著降低。
这项工作提供了关于细胞壁应激适应性反应所涉及的机制以及细胞壁完整性所需的细胞功能的全面观点。这些结果可能有助于发现新的潜在抗真菌靶点,并通过联合使用两种药物(一种靶向细胞壁,另一种干扰适应性机制)来开发有效的抗真菌策略。