Leung Kam
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD
Magnetic resonance imaging (MRI) maps information about tissues spatially and functionally. Protons (hydrogen nuclei) are widely used to create images because of their abundance in water molecules, which comprise >80% of most soft tissues. The contrast of proton MRI images depends mainly on the density of nuclear proton spins, the relaxation times of the nuclear magnetization (T1, longitudinal; T2, transverse), the magnetic environment of the tissues, and the blood flow to the tissues. However, insufficient contrast between normal and diseased tissues requires the use of contrast agents. Most contrast agents affect the T1 and T2 relaxation times of the surrounding nuclei, mainly the protons of water. T2* is the spin–spin relaxation time composed of variations from molecular interactions and intrinsic magnetic heterogeneities of tissues in the magnetic field (1). Cross-linked iron oxide (CLIO) and other iron oxide formulations affect T2 primarily and lead to a decreased signal. On the other hand, paramagnetic T1 agents, such as gadolinium (Gd) and manganese (Mn), accelerate T1 relaxation and lead to brighter contrast images. The superparamagnetic iron oxide (SPIO) structure is composed of ferric iron (Fe) and ferrous iron (Fe). These particles have large combined magnetic moments or spins, which are randomly rotated in the absence of an applied magnetic field. SPIO is used mainly as a T2 contrast agent in MRI, though it can shorten both T1 and T2/T2* relaxation processes. SPIO particle uptake into the reticuloendothelial system (RES) is by endocytosis or phagocytosis. SPIO particles are also taken up by phagocytic cells such as monocytes, macrophages, and oligodendroglial cells. SPIO nanoparticles are sometimes modified with dextran, poly(ethylene glycol) (PEG), or other biomaterials to reduce RES uptake and to prolong blood half-life. A variety of cells can also be labeled with these particles for cell trafficking and tumor-specific molecular imaging studies. SPIO agents are classified by their sizes with coating material (~20–3,500 nm in diameter) as large SPIO (LSPIO) nanoparticles, standard SPIO (SSPIO) nanoparticles, ultrasmall SPIO (USPIO) nanoparticles, and monocrystalline iron oxide nanoparticles (MION) (1). Gold (Au) are easily added to SPIO nanoparticles with electron beam irradiation of a solution of Au and SPIO to form Au/SPIO (2). The Au moieties are highly reactive with the thiol group a strong Au-S bond. Kojima et al. (3) coated the Au/SPIO nanoparticles with a thiol-modified PEG (PEG-S) to form PEG-S-Au/SPIO nanoparticles to study tumor accumulation in tumor-bearing mice.
磁共振成像(MRI)在空间和功能上对组织信息进行映射。质子(氢原子核)因其在水分子中含量丰富而被广泛用于生成图像,水分子占大多数软组织的80%以上。质子MRI图像的对比度主要取决于核磁质子自旋密度、核磁化的弛豫时间(T1,纵向;T2,横向)、组织的磁环境以及组织的血流情况。然而,正常组织和病变组织之间对比度不足需要使用造影剂。大多数造影剂会影响周围原子核的T1和T2弛豫时间,主要是水的质子。T2是由分子相互作用和磁场中组织的固有磁不均匀性引起的自旋-自旋弛豫时间(1)。交联氧化铁(CLIO)和其他氧化铁制剂主要影响T2并导致信号降低。另一方面,顺磁性T1造影剂,如钆(Gd)和锰(Mn),会加速T1弛豫并产生对比度更高的明亮图像。超顺磁性氧化铁(SPIO)结构由三价铁(Fe)和二价铁(Fe)组成。这些粒子具有较大的总磁矩或自旋,在没有外加磁场时随机旋转。SPIO在MRI中主要用作T2造影剂,尽管它可以缩短T1和T2/T2弛豫过程。SPIO粒子通过内吞作用或吞噬作用被网状内皮系统(RES)摄取。SPIO粒子也被吞噬细胞如单核细胞、巨噬细胞和少突胶质细胞摄取。SPIO纳米颗粒有时用葡聚糖、聚乙二醇(PEG)或其他生物材料进行修饰,以减少RES摄取并延长血液半衰期。多种细胞也可以用这些粒子进行标记,用于细胞转运和肿瘤特异性分子成像研究。SPIO制剂根据其尺寸和涂层材料(直径约20-3500nm)分为大SPIO(LSPIO)纳米颗粒、标准SPIO(SSPIO)纳米颗粒、超小SPIO(USPIO)纳米颗粒和单晶氧化铁纳米颗粒(MION)(1)。通过对金和SPIO的溶液进行电子束辐照,很容易将金(Au)添加到SPIO纳米颗粒中,形成Au/SPIO(2)。金部分与硫醇基团具有高反应性——形成强Au-S键。小岛等人(3)用硫醇修饰的PEG(PEG-S)包覆Au/SPIO纳米颗粒,形成PEG-S-Au/SPIO纳米颗粒,用于研究荷瘤小鼠中的肿瘤蓄积情况。