文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

铜-二乙烯三胺五乙酸-超顺磁性氧化铁纳米粒子- VT680

Cu-DTPA-CLIO-VT680

作者信息

Zhang Huiming

机构信息

National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,

出版信息


DOI:
PMID:20641719
Abstract

Macrophages are key cellular mediators of inflammation in atheroma and participate in all phases of atherogenesis (1, 2). The atheroma lesion is initialized by recruiting monocytes in inflamed intima. Monocytes mature into macrophages under the stimulation of overexpressed macrophage colony-stimulating factor. As cholesteryl esters gradually accumulate in cytoplasm, macrophages are converted into foam cells at the early stage of atheroma. The accumulation of foam cells leads to the formation of fatty streaks and the deposition of fibrous tissues, indicating the progression of atheroma into an intermediate stage. Fibrous caps are formed on the surface of a lipid-rich core and result in vulnerable plaque as the smooth muscle cells synthesize bulk extracellular matrix. The rupture of plaque and the calcification of vessel walls progressively occlude the lumen. All of these developmental stages are produced in apolipoprotein E–deficient (apoE) mice (3), a transgenic animal model with targeted deletion of the apoE gene. As a ligand, apoE binds to the receptors that are responsible for clearing chylomicrons and very low density lipoprotein remnants (4). A deficiency in apoE reduces diet cholesterol absorption and leads to a substantial increase in plasma cholesterol levels. ApoE mice are used in the study of spontaneous hypercholesterolemia and the subsequent development of atherosclerotic lesions (4, 5). The histopathological progression found in apoE mice is very similar to that found in humans (3). Because the arch shape and the proximity to three major arteries (the right and left common carotid arteries and the left subclavian arteries), atherosclerosis primarily occurs at the aortic arch in apoE mice (3). Dextran-coated paramagnetic nanoparticles, such as ultra-small superparamagnetic iron oxide particles (USPIO), are known to accumulate in the macrophages located in inflamed lesions and carotid artery plaques after intravenous administration (6). The active internalization mechanism may be associated with dextran receptor–mediated endocytosis (1). Intracellular dextranase cleaves the dextran coating and leaves the iron oxide to be solubilized into iron ions followed by progressive incorporation into the hemoglobin pool (6). Because of long circulation times, excellent biocompatibility, and high relaxivity, USPIO are widely used to enhance magnetic resonance imaging (MRI) contrast for imaging lesional macrophages in stroke, multiple sclerosis, atherosclerotic diseases, spinal cord injury, and brain tumors (6). Monocrystalline iron oxide nanoparticles (MION) are a special type of USPIO that contain an icosahedral core of superparamagnetic crystalline FeO (magnetite) with a diameter of ~5 nm (7). Using epichlorohydrin to cross-link the dextran coating and amine groups to functionalize the surface, MION can be converted into an aminated platform (cross-linked iron oxide (CLIO)-NH) that allows attachment of various imaging probes (8). CLIO-NH carrying fluorescent probes has demonstrated preferential uptake by lesional macrophages, concomitant with a much lower uptake by endothelial cells and smooth muscle cells (1). Cu-Labeled diethylenetriamine pentaacetic acid (DTPA)-CLIO-Vivotag 680 (VT680) is a Cu-labeled triple reporter nanoparticle (Cu-TNP) used in MRI, positron-emission tomography (PET), and optical fluorescence imaging (9). Cu-TNP consists of three probe types. A CLIO-NH forms the core of the nanoparticle, generates a T-shortening effect in MRI, and is recognizable by macrophages. Numerous complexes of Cu-DTPA are attached to the surface of CLIO-NH for PET detection. Cu is a positron-emitting radionuclide with an intermediate half-life (12.7 h) that decays by positron (β) with a branching factor of 17.4% and a maximum β energy of 0.653 MeV (10). Cu has been used as a radiotracer in PET imaging and a radiotherapy agent in cancer treatment. Five molecules of VT680, an amine-reactive N-hydroxysuccinimide (NHS) ester of a (benzyl)-indolium–derived far-red fluorescent probe that remains internalized in cells for days without interfering with cell functions, are attached to CLIO-NH for fluorescence imaging (11). Its excitation/emission peak is located at 670 ± 5 nm/688 ± 5 nm. The internalization mechanism includes diffusion into cells within minutes and covalent binding to cellular components (11). This macrophage-targeted PET/MRI/optical agent allows complementary information to be obtained by multimodal imaging (9). The PET tracer is detected at 10–10 M (10), providing a sensitivity to detection that is at least one order of magnitude higher than the 10 M in MRI (9). The spatial resolution of MRI permits mapping of the atherosclerotic vascular territories. The cell-specified optical probes explore the fate of the imaging probe at cellular levels (9, 11).

摘要

巨噬细胞是动脉粥样硬化中炎症的关键细胞介质,参与动脉粥样硬化发生的各个阶段(1, 2)。动脉粥样硬化病变始于炎症内膜中单核细胞的募集。单核细胞在过表达的巨噬细胞集落刺激因子的刺激下成熟为巨噬细胞。随着胆固醇酯在细胞质中逐渐积累,巨噬细胞在动脉粥样硬化早期转化为泡沫细胞。泡沫细胞的积累导致脂肪条纹的形成和纤维组织的沉积,表明动脉粥样硬化进展到中间阶段。富含脂质的核心表面形成纤维帽,随着平滑肌细胞合成大量细胞外基质,形成易损斑块。斑块破裂和血管壁钙化逐渐使管腔闭塞。所有这些发育阶段都出现在载脂蛋白E缺乏(apoE)小鼠中(3),这是一种靶向缺失apoE基因的转基因动物模型。作为一种配体,apoE与负责清除乳糜微粒和极低密度脂蛋白残粒的受体结合(4)。apoE缺乏会降低饮食中胆固醇的吸收,并导致血浆胆固醇水平大幅升高。apoE小鼠用于研究自发性高胆固醇血症及随后动脉粥样硬化病变的发展(4, 5)。在apoE小鼠中发现的组织病理学进展与在人类中发现的非常相似(3)。由于主动脉弓的形状以及与三条主要动脉(左右颈总动脉和左锁骨下动脉)的接近程度,动脉粥样硬化主要发生在apoE小鼠的主动脉弓处(3)。已知静脉注射后,葡聚糖包被的顺磁性纳米颗粒,如超小超顺磁性氧化铁颗粒(USPIO),会在炎症病变和颈动脉斑块中的巨噬细胞中积累(6)。活跃的内化机制可能与葡聚糖受体介导的内吞作用有关(1)。细胞内的葡聚糖酶裂解葡聚糖包被,使氧化铁溶解为铁离子,随后逐渐整合到血红蛋白池中(6)。由于循环时间长、生物相容性好和弛豫率高,USPIO被广泛用于增强磁共振成像(MRI)对比度,以成像中风、多发性硬化症、动脉粥样硬化疾病、脊髓损伤和脑肿瘤中的病变巨噬细胞(6)。单晶氧化铁纳米颗粒(MION)是一种特殊类型的USPIO,其包含一个直径约为5 nm的超顺磁性结晶FeO(磁铁矿)的二十面体核心(7)。使用环氧氯丙烷交联葡聚糖包被并通过胺基对表面进行功能化,MION可以转化为一个胺化平台(交联氧化铁(CLIO)-NH),允许连接各种成像探针(8)。携带荧光探针的CLIO-NH已证明优先被病变巨噬细胞摄取,同时内皮细胞和平滑肌细胞的摄取要低得多(1)。铜标记的二乙烯三胺五乙酸(DTPA)-CLIO-Vivotag 680(VT680)是一种用于MRI、正电子发射断层扫描(PET)和光学荧光成像的铜标记三联报告纳米颗粒(Cu-TNP)(9)。Cu-TNP由三种探针类型组成。一个CLIO-NH形成纳米颗粒的核心,在MRI中产生T2缩短效应,并可被巨噬细胞识别。大量的Cu-DTPA复合物附着在CLIO-NH表面用于PET检测。铜是一种正电子发射放射性核素,半衰期适中(12.7小时),通过正电子(β)衰变,分支因子为17.4%,最大β能量为0.653 MeV(10)。铜已被用作PET成像中的放射性示踪剂和癌症治疗中的放射治疗剂。五个VT680分子,一种(苄基)-吲哚衍生的远红光荧光探针的胺反应性N-羟基琥珀酰亚胺(NHS)酯,可在细胞内保持内化数天而不干扰细胞功能,附着在CLIO-NH上用于荧光成像(11)。其激发/发射峰位于670±5 nm/688±5 nm。内化机制包括在几分钟内扩散到细胞内并与细胞成分共价结合(11)。这种靶向巨噬细胞的PET/MRI/光学试剂允许通过多模态成像获得互补信息(9)。PET示踪剂在10–10 M时可被检测到(10),提供的检测灵敏度比MRI中的10–5 M至少高一个数量级(9)。MRI的空间分辨率允许绘制动脉粥样硬化血管区域。细胞特异性光学探针在细胞水平上探索成像探针的命运(9, 11)。

相似文献

[1]
Cu-DTPA-CLIO-VT680

2004

[2]
Gly-Ser-Ser-Lys-(FITC)-Gly-Gly-Gly-Cys-Arg-Gly-Asp-Cys-CLIO-Cy5.5

2004

[3]
Ethyl-3,5-bis(acetylamino)-2,4,6-triiodobenzoate nanoparticles

2004

[4]
Green fluorescent protein specified small interfering RNA-cross-linked iron oxide nanoparticles-Cy5.5

2004

[5]
Octreotide conjugated to pegylated ultrasmall superparamagnetic iron oxide nanoparticle

2004

[6]
Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-quantum dot-vascular endothelial growth factor

2004

[7]
Ultrasmall superparamagnetic iron oxide nanoparticles conjugated with Ile-Pro-Leu-Pro-Phe-Tyr-Asn

2004

[8]
Sialy Lewis mimetic conjugated to pegylated ultrasmall superparamagnetic iron oxide nanoparticles

2004

[9]
Anti-vascular cell adhesion molecule monoclonal antibody M/K-2.7 conjugated cross-linked iron oxide-Cy5.5 nanoparticles

2004

[10]
Survivin specified small interfering RNA-CLIO-Cy5.5

2004

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索