Suppr超能文献

钆内嵌富勒烯醇

Gd@C Fullerenol

作者信息

Zhang Huiming

机构信息

National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,

Abstract

Fullerenes, also known as buckyballs, are spheroidal carbon cages with a molecular formula of C ( = 30–41) and a diameter of ~1 nm (1). The high chemical stability of fullerenes can resist any potential metabolic cage-opening process and hence prevents them from degradation in various biological conditions (2). Fullerenes contain hollow interiors that can hold atoms or ions as payloads for various biomedical applications (1). For example, Gd atoms or the trimetallic nitride GdN can be trapped inside the cage to form endohedral metallofullerenes denoted as Gd@C or GdN@C, where the “@” symbol refers to the encapsulated nature of the Gd or GdN. For the Gd@C, the encapsulation of electropositive Gd atom leads to the transfer of electrons from the Gd atom to the electronegative fullerene cage, resulting in a zwitterion [Gd@C]. For GdN@C, each Gd atom shares one electron with the N atom and donates the other two electrons to the C80 cage that is in -symmetry to produce a zwitterion [GdN@C] (3, 4). These endohedral metallofullerenes thus lead to the generation of a novel type of contrast agent for magnetic resonance imaging (MRI), which possesses a high biological safety in that the carbon cage completely prevents the release of toxic Gd ions into surrounding tissues (5, 6). The surface of fullerenes can be functionalized with a variety of groups or specific ligands; i.e., the addition of hydroxyls or polyethylene glycols (PEG) substantially increases their aqueous solubility (7). Gd-Fullerenols (Gd@C(OH)) are water-soluble Gd endohedral metallofullerenes used with MRI (8). The encapsulation of Gd has three electrons transferred to the C82 fullerene cage, resulting in zwitterions [Gd@C(OH)] in which seven unpaired electrons are located on the 4f-orbital of gadolinium ion and one unpaired electron is located on the fullerene cage. These unpaired electrons contribute to the paramagnetic moment of Gd@C(OH). Nevertheless, the encapsulation of the Gd ion inside the carbon cage prevents direct coordination and exchange of water to Gd. The relaxation enhancement of Gd@C(OH) is therefore quite different from the classic inner-sphere mechanism in conventional Gd chelates such as Gd-DTPA but depends on its paramagnetic moment and intermolecular aggregation effect (1). The aggregation leads to an increase in the rotational correlation time and alterations in the water exchange kinetics, which both influence the resultant relaxivity.

摘要

富勒烯,也被称为巴基球,是一种球状碳笼,分子式为C(= 30 - 41),直径约为1纳米(1)。富勒烯具有高化学稳定性,能够抵抗任何潜在的代谢性开笼过程,因此在各种生物条件下都不会降解(2)。富勒烯含有中空内部,可以容纳原子或离子作为各种生物医学应用的负载物(1)。例如,钆原子或三金属氮化物GdN可以被困在笼内,形成内包金属富勒烯,记为Gd@C或GdN@C,其中“@”符号表示Gd或GdN的包封性质。对于Gd@C,带正电的钆原子的包封导致电子从钆原子转移到带负电的富勒烯笼上,产生两性离子[Gd@C]。对于GdN@C,每个钆原子与氮原子共享一个电子,并将另外两个电子捐赠给呈Ih对称性的C80笼,以产生两性离子[GdN@C](3, 4)。这些内包金属富勒烯因此导致产生一种新型的磁共振成像(MRI)造影剂,其具有高生物安全性,因为碳笼完全防止有毒的钆离子释放到周围组织中(5, 6)。富勒烯的表面可以用各种基团或特定配体进行功能化;即,添加羟基或聚乙二醇(PEG)可显著提高其水溶性(7)。钆富勒醇(Gd@C(OH))是用于MRI的水溶性钆内包金属富勒烯(8)。钆的包封导致三个电子转移到C82富勒烯笼上,产生两性离子[Gd@C(OH)],其中七个未成对电子位于钆离子的4f轨道上,一个未成对电子位于富勒烯笼上。这些未成对电子有助于Gd@C(OH)的顺磁矩。然而,钆离子在碳笼内的包封阻止了水与钆的直接配位和交换。因此,Gd@C(OH)的弛豫增强与传统钆螯合物如Gd - DTPA中的经典内球机制有很大不同,而是取决于其顺磁矩和分子间聚集效应(1)。聚集导致旋转相关时间增加和水交换动力学改变,这两者都会影响最终的弛豫率。

相似文献

3
Biomedical activities of endohedral metallofullerene optimized for nanopharmaceutics.
J Nanosci Nanotechnol. 2010 Dec;10(12):8610-6. doi: 10.1166/jnn.2010.2691.
4
Transmembrane delivery of aggregated [Gd@C82(OH)22]n nanoparticles.
J Nanosci Nanotechnol. 2010 Dec;10(12):8556-61. doi: 10.1166/jnn.2010.2490.
8
Bonding inside and outside Fullerene Cages.
Acc Chem Res. 2018 Mar 20;51(3):810-815. doi: 10.1021/acs.accounts.8b00014. Epub 2018 Feb 27.
9
10
Endohedral metallofullerenes based on spherical I(h)-C(80) cage: molecular structures and paramagnetic properties.
Acc Chem Res. 2014 Feb 18;47(2):450-8. doi: 10.1021/ar400156z. Epub 2013 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验