Suppr超能文献

针对纳米药物优化的内嵌金属富勒烯的生物医学活性。

Biomedical activities of endohedral metallofullerene optimized for nanopharmaceutics.

作者信息

Meng Jie, Wang Dong-liang, Wang Paul C, Jia Lee, Chen Chunying, Liang Xing-Jie

机构信息

Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanosciences and Technology of China, Beijing 100190, China.

出版信息

J Nanosci Nanotechnol. 2010 Dec;10(12):8610-6. doi: 10.1166/jnn.2010.2691.

Abstract

Endohedral metallofullerenes, a novel form of carbon-related nanomaterials, currently attract wide attention for their potential applications in biomedical fields such as therapeutic medicine. Most endohedral metallofullerenes are synthesized using C60 or higher molecular weight fullerenes because of the limited interior volume of fullerene. It is known that the encapsulated metal atom has strong electronic interactions with the carbon cage in metallofullerenes. Gd@C82 is one of the most important molecules in the metallofullerene family, known as Magnetic Resonance Imaging (MRI) contrast agent candidate for diagnostic imaging. Gadolinium endohedral metallofullerenol (e.g., Gd@C82(OH)22) is a functionalized fullerene with gadolinium trapped inside carbon cage. Our group previously demonstrated that the distinctive chemical and physical properties of Gd@C82(OH)22 are dependent on the number and position of the hydroxyl groups on the fullerene cage. The present article summarizes our latest findings of biomedical effects of Gd@C82(OH)22 and gives rise to a connected flow of the existing knowledge and information from experts in the field. It briefly narrates the synthesis and physico-chemical properties of Gd@C82(OH)22. The polyhydroxylated nanoparticles exhibit the enhanced water solubility and high purity, and were tested as a MRI contrast agent. Gd@C82(OH)22 treatment inhibited tumor growth in tumor-bearing nude mice. Although the precise mechanisms of this action are not well defined, our in vitro data suggest involvements of improved immunity and antioxidation by Gd@C82(OH)22 and its size-based selective targeting to tumor site. The review critically analyzed the relevant data instead of fact-listing, and explained the potential for developing Gd@C82(OH)22 into a diagnostic or therapeutic agent.

摘要

内嵌金属富勒烯是一种新型的碳基纳米材料,因其在治疗医学等生物医学领域的潜在应用而受到广泛关注。由于富勒烯内部体积有限,大多数内嵌金属富勒烯是使用C60或更高分子量的富勒烯合成的。众所周知,内嵌金属富勒烯中封装的金属原子与碳笼具有强烈的电子相互作用。Gd@C82是金属富勒烯家族中最重要的分子之一,被认为是用于诊断成像的磁共振成像(MRI)造影剂候选物。钆内嵌金属富勒烯醇(例如,Gd@C82(OH)22)是一种功能化富勒烯,钆被困在碳笼内。我们小组之前证明,Gd@C82(OH)22独特的化学和物理性质取决于富勒烯笼上羟基的数量和位置。本文总结了我们关于Gd@C82(OH)22生物医学效应的最新发现,并梳理了该领域专家现有的知识和信息。它简要叙述了Gd@C82(OH)22的合成及物理化学性质。这种多羟基化纳米颗粒表现出增强的水溶性和高纯度,并作为MRI造影剂进行了测试。Gd@C82(OH)22处理抑制了荷瘤裸鼠的肿瘤生长。尽管这种作用的确切机制尚不完全清楚,但我们的体外数据表明,Gd@C82(OH)22通过改善免疫和抗氧化作用以及基于其大小的对肿瘤部位的选择性靶向发挥作用。这篇综述批判性地分析了相关数据,而非罗列事实,并解释了将Gd@C82(OH)22开发成诊断或治疗剂的潜力。

相似文献

1
Biomedical activities of endohedral metallofullerene optimized for nanopharmaceutics.
J Nanosci Nanotechnol. 2010 Dec;10(12):8610-6. doi: 10.1166/jnn.2010.2691.
6
Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger.
Mol Pharmacol. 2008 Oct;74(4):1132-40. doi: 10.1124/mol.108.048348. Epub 2008 Jul 17.
7
The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy.
Nanoscale. 2019 Aug 8;11(31):14528-14539. doi: 10.1039/c9nr04129j.
8
Transmembrane delivery of aggregated [Gd@C82(OH)22]n nanoparticles.
J Nanosci Nanotechnol. 2010 Dec;10(12):8556-61. doi: 10.1166/jnn.2010.2490.

引用本文的文献

1
ScN@ -C based donor-acceptor conjugate: role of thiophene spacer in promoting ultrafast excited state charge separation.
RSC Adv. 2020 May 27;10(34):19861-19866. doi: 10.1039/d0ra04379f. eCollection 2020 May 26.
2
Interactions between Endohedral Metallofullerenes and Proteins: The Gd@C-Lysozyme Model.
ACS Omega. 2018 Oct 22;3(10):13782-13789. doi: 10.1021/acsomega.8b01888. eCollection 2018 Oct 31.
3
Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells.
IUCrJ. 2018 Jan 10;5(Pt 2):141-149. doi: 10.1107/S2052252517017912. eCollection 2018 Mar 1.
4
5
Functionalized fullerenes in photodynamic therapy.
J Biomed Nanotechnol. 2014 Sep;10(9):1918-36. doi: 10.1166/jbn.2014.1963.

本文引用的文献

1
Influences of Structural Properties on Stability of Fullerenols.
J Phys Chem B. 2004 Aug 5;108(31):11473-11479. doi: 10.1021/jp0487962.
2
The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis.
Nanotechnology. 2008 Apr 9;19(14):145102. doi: 10.1088/0957-4484/19/14/145102. Epub 2008 Mar 4.
3
The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity.
Biomaterials. 2009 Aug;30(23-24):3934-45. doi: 10.1016/j.biomaterials.2009.04.001. Epub 2009 Apr 28.
5
The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials.
Biomaterials. 2009 Feb;30(4):611-21. doi: 10.1016/j.biomaterials.2008.09.061. Epub 2008 Nov 4.
6
Biopharmaceutics and therapeutic potential of engineered nanomaterials.
Curr Drug Metab. 2008 Oct;9(8):697-709. doi: 10.2174/138920008786049230.
7
Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger.
Mol Pharmacol. 2008 Oct;74(4):1132-40. doi: 10.1124/mol.108.048348. Epub 2008 Jul 17.
8
Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60).
Biomaterials. 2008 Sep;29(26):3561-73. doi: 10.1016/j.biomaterials.2008.05.005. Epub 2008 Jun 4.
9
Solubilisation of [60]fullerenes using block copolymers and evaluation of their photodynamic activities.
Org Biomol Chem. 2008 Mar 21;6(6):1015-9. doi: 10.1039/b719671g. Epub 2008 Feb 18.
10
Cytotoxicity of aggregated fullerene C60 particles on CHO and MDCK cells.
Scanning. 2008 Mar-Apr;30(2):213-20. doi: 10.1002/sca.20081.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验