Remigante Alessia, Studzian Maciej, Spinelli Sara, Piotrowski Piotr, Litwinienko Grzegorz, Gorny Krzysztof, Raczynski Przemyslaw, Marino Angela, Morabito Rossana, Grebowski Jacek
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232, Lodz, Poland.
Free Radic Biol Med. 2025 Mar 1;229:499-513. doi: 10.1016/j.freeradbiomed.2025.01.052. Epub 2025 Jan 26.
Metallofullerenols and fullerenols have attracted attention due to their remarkable ability to interact with various biologically relevant molecules, paving the way for biomedical applications, ranging from medical imaging techniques to drug carriers, acting with increased efficiency and reduced side effects. In this work, we investigated the effects of two fullerene derivatives, Gd@C(OH) and C(OH), on erythrocyte membrane components under oxidative stress conditions induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) as a source of peroxyl radicals. The results demonstrated that gadolinium encapsulation within the fullerene cage enhanced the electron affinity of Gd@C(OH), resulting in stronger antioxidant activity. Gd@C(OH) formed a protective hydrophilic layer at the lipid-water interface, effectively preventing lipid peroxidation, oxidative protein damage, and potassium leakage, outperforming C(OH). Both compounds improved membrane fluidity, but Gd@C(OH) exhibited superior preservation of the erythrocyte lipid bilayer and protein function. Additionally, Gd@C(OH) maintained the anion exchange function of band 3 protein, which is critical for ionic homeostasis, by preventing oxidation-induced aggregation and preserving thiol groups. Despite its limited membrane penetration, Gd@C(OH) stabilized membrane components through hydrogen bonding, which indirectly enhanced membrane stiffness and fluidity under oxidative stress. This external protection of membrane integrity reduced the risk of lipid peroxidation and oxidative damage to erythrocyte proteins. In contrast, C(OH), while effective in protecting membrane lipids, was less effective in preserving protein structure. These findings highlight the unique protective properties of Gd@C(OH), attributed to polarization effects induced by the encapsulated Gd atom. This study indicates that metallofullerenols, such as Gd@C(OH), may have therapeutic potential in mitigating oxidative damage.
金属富勒醇和富勒醇因其与各种生物相关分子相互作用的卓越能力而备受关注,这为生物医学应用铺平了道路,从医学成像技术到药物载体,其作用效率更高且副作用更小。在这项工作中,我们研究了两种富勒烯衍生物,Gd@C(OH) 和 C(OH),在由 2,2'-偶氮二(2-脒基丙烷)二盐酸盐(AAPH)作为过氧自由基源诱导的氧化应激条件下对红细胞膜成分的影响。结果表明,富勒烯笼内的钆包封增强了 Gd@C(OH) 的电子亲和力,从而产生更强的抗氧化活性。Gd@C(OH) 在脂质-水界面形成了一层保护性亲水层,有效防止脂质过氧化、氧化蛋白质损伤和钾泄漏,其性能优于 C(OH)。两种化合物都改善了膜流动性,但 Gd@C(OH) 在红细胞脂质双层和蛋白质功能的保存方面表现更优。此外,Gd@C(OH) 通过防止氧化诱导的聚集并保留巯基,维持了带 3 蛋白的阴离子交换功能,这对离子稳态至关重要。尽管 Gd@C(OH) 的膜穿透性有限,但它通过氢键稳定膜成分,在氧化应激下间接增强了膜的硬度和流动性。这种对膜完整性的外部保护降低了脂质过氧化和红细胞蛋白质氧化损伤的风险。相比之下,C(OH) 虽然在保护膜脂质方面有效,但在保存蛋白质结构方面效果较差。这些发现突出了 Gd@C(OH) 的独特保护特性,这归因于包封的 Gd 原子诱导的极化效应。这项研究表明,金属富勒醇,如 Gd@C(OH),在减轻氧化损伤方面可能具有治疗潜力。