Suppr超能文献

苄氧羰基封端的苯丙氨酸-赖氨酸(Cy5)-酰氧基甲基酮

Carbobenzoxy-capped Phe-Lys(Cy5)-acyloxymethyl ketone

作者信息

Shan Liang

机构信息

National Center for Biotechnology Information, NLM, NIH

Abstract

The human cysteine cathepsins have 11 members (cathepsins B, C, H, F, K, L, O, S, V, W, and X/Z) and share a conserved active site that is formed by cysteine, histidine, and asparagine residues (1-5). Cathepsins B, L, H, F, O, X/Z, and C are expressed ubiquitously, whereas the expression of cathepsins S, K, W, and V are relatively organ-limited. Cysteine cathepsins interact with other proteases (aspartic, metallo, serine, and threonine) in a cascade-like manner, involving various physiological processes, including protein degradation, precursor protein activation, MHC-II–mediated antigen presentation, bone remodeling, keratinocytes differentiation, hair follicle cycle, reproduction, and apoptosis (6, 7). Increased expression and activity, and relocalization to the plasma membrane of cysteine cathepsins are associated with the pathogenesis of a number of human diseases such as cancer, atherosclerosis, and neurodegenerative diseases, and changes related to cysteine cathepsins have been shown to be of diagnostic and prognostic value for the diseases (2, 8-11). Significant efforts have been made in developing optical molecular probes of protease activity (4, 7, 12, 13). These probes are either substrate-based or activity-based, providing a readout of the enzyme activity rather than simple protein abundance. Substrate-based probes (SBPs) are designed using fluorescent peptide sequences tethered to a large polymer or dendramer backbone, and these SBPs are internally quenched by the high density of fluorophores loaded onto the backbone structure. Similar to conventional enzymatic tests, SBPs appear to be less reliable because of overlapping substrate specificities, enzymatic activity instability, and interactions with endogenous inhibitors. Activity-based probes (ABPs) label target proteases through the formation of a covalent bond with the active site cysteine. The selectivity of an ABP is controlled by both its peptide selectivity sequence and reactive functional group. The fluorescent reporter allows probe-labeled cathepsins to be directly visualized. Because ABPs tend to be small molecules, the half-lives of ABPs are relatively short, which results in the production of high-contrast images. A drawback of using a covalent probe is the lack of signal amplification because the target proteases are inactivated upon binding the probe. However, sufficient levels of the active proteases have been found to exist in tumor tissues, which allows the generation of reasonable contrast images using noninvasive methods (4, 7, 12). Blum et al. synthesized a group of near-infrared fluorescent activity-based probes (NIRF-ABPs) for noninvasive optical imaging of cysteine protease activity (4, 7, 12, 14). These probes can be subgrouped into quenched ABPs (qABPs) (e.g., GB117, GB119, GB135, and GB137) and nonquenched ABPs (e.g., GB111, GB123, and GB138). In short, the probes consist of a reactive group of peptide acyloxymethyl ketone (AOMK) that targets diverse members of cysteine cathepsins. The ketone in AOMK reacts with the cysteine in the enzyme active site and produces a stable thiomethyl ketone adduct. The covalent binding involves the loss of the acyloxy group of AOMK. Thus, a probe carrying a fluorescent reporter group on its peptide scaffold and a highly efficient quenching molecule attached to the acyloxy-losing group should result in a quenched probe that only becomes fluorescent upon covalent binding with an enzyme. In addition, a spacer is designed to reduce the steric congestion between the reporter and the fluorescence quencher. Blum et al. have shown that the NIRF-ABPs are nontoxic to cells, reasonably water soluble, potentially valuable as imaging agents for disease diagnosis, and powerful tools for preclinical and clinical testing of small-molecule therapeutic agents. Although NIRF-ABPs present different features regarding stability, specificity, and kinetics, the quenched probes can be used to image specific protease activity at considerably earlier time points than can be used for substrate-based methods or nonquenched ABPs. However, high levels of signal in large organs with high cathepsin activity such as liver, kidney, and spleen make activity-based imaging of specific locations within the central body cavity difficult. In this chapter, the synthesis and analytic results of nonquenched ABP GB123 were introduced. GB123 is the Cy5 version of the first generation of nonquenched ABP GB111.

摘要

人类半胱氨酸组织蛋白酶有11个成员(组织蛋白酶B、C、H、F、K、L、O、S、V、W以及X/Z),它们共享一个由半胱氨酸、组氨酸和天冬酰胺残基形成的保守活性位点(1 - 5)。组织蛋白酶B、L、H、F、O、X/Z和C在全身广泛表达,而组织蛋白酶S、K、W和V的表达则相对局限于特定器官。半胱氨酸组织蛋白酶以级联方式与其他蛋白酶(天冬氨酸、金属、丝氨酸和苏氨酸蛋白酶)相互作用,涉及各种生理过程,包括蛋白质降解、前体蛋白激活、MHC-II介导的抗原呈递、骨重塑、角质形成细胞分化、毛囊周期、生殖和细胞凋亡(6, 7)。半胱氨酸组织蛋白酶表达和活性的增加以及重新定位到质膜与许多人类疾病如癌症、动脉粥样硬化和神经退行性疾病的发病机制相关,并且与半胱氨酸组织蛋白酶相关的变化已被证明对这些疾病具有诊断和预后价值(2, 8 - 11)。在开发蛋白酶活性的光学分子探针方面已经做出了重大努力(4, 7, 12, 13)。这些探针要么是基于底物的,要么是基于活性的,提供的是酶活性的读数而不是简单的蛋白质丰度。基于底物的探针(SBPs)是使用连接到大聚合物或树枝状聚合物主链上的荧光肽序列设计的,并且这些SBPs由于加载到主链结构上的荧光团高密度而被内部淬灭。与传统酶促测试类似,由于底物特异性重叠、酶活性不稳定以及与内源性抑制剂的相互作用,SBPs似乎不太可靠。基于活性的探针(ABPs)通过与活性位点半胱氨酸形成共价键来标记目标蛋白酶。ABP的选择性由其肽选择性序列和反应性功能基团共同控制。荧光报告基团使探针标记的组织蛋白酶能够直接可视化。由于ABPs往往是小分子,ABPs的半衰期相对较短,这导致产生高对比度图像。使用共价探针的一个缺点是缺乏信号放大,因为目标蛋白酶在与探针结合后会失活。然而,已发现肿瘤组织中存在足够水平的活性蛋白酶,这使得使用非侵入性方法能够生成合理的对比度图像(4, 7, 12)。Blum等人合成了一组用于半胱氨酸蛋白酶活性无创光学成像的近红外荧光活性探针(NIRF - ABPs)(4, 7, 12, 14)。这些探针可分为淬灭ABPs(qABPs)(例如GB117、GB119、GB135和GB137)和非淬灭ABPs(例如GB111、GB123和GB138)。简而言之,这些探针由靶向半胱氨酸组织蛋白酶不同成员的肽酰氧基甲基酮(AOMK)反应基团组成。AOMK中的酮与酶活性位点中的半胱氨酸反应并产生稳定的硫代甲基酮加合物。共价结合涉及AOMK酰氧基的损失。因此,在其肽支架上带有荧光报告基团并且连接到失去酰氧基的基团上的高效淬灭分子的探针应该会产生一种仅在与酶共价结合时才会发荧光的淬灭探针。此外,设计了一个间隔基团以减少报告基团与荧光淬灭剂之间的空间拥挤。Blum等人已经表明,NIRF - ABPs对细胞无毒,具有合理的水溶性,作为疾病诊断的成像剂具有潜在价值,并且是小分子治疗剂临床前和临床测试的有力工具。尽管NIRF - ABPs在稳定性、特异性和动力学方面具有不同的特点,但与基于底物的方法或非淬灭ABPs相比,淬灭探针可用于在更早的时间点对特定蛋白酶活性进行成像。然而,在组织蛋白酶活性高的大器官如肝脏、肾脏和脾脏中高水平的信号使得对体腔中心特定位置进行基于活性的成像变得困难。在本章中,介绍了非淬灭ABP GB123的合成及分析结果。GB123是第一代非淬灭ABP GB111的Cy5版本。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验