Suppr超能文献

远红荧光蛋白可被红光激光激发,适用于流式细胞术和超高分辨率 STED 纳米显微镜。

Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy.

出版信息

Biophys J. 2010 Jul 21;99(2):L13-5. doi: 10.1016/j.bpj.2010.04.025.

Abstract

Far-red fluorescent proteins are required for deep-tissue and whole-animal imaging and multicolor labeling in the red wavelength range, as well as probes excitable with standard red lasers in flow cytometry and fluorescence microscopy. Rapidly evolving superresolution microscopy based on the stimulated emission depletion approach also demands genetically encoded monomeric probes to tag intracellular proteins at the molecular level. Based on the monomeric mKate variant, we have developed a far-red TagRFP657 protein with excitation/emission maxima at 611/657 nm. TagRFP657 has several advantages over existing monomeric far-red proteins including higher photostability, better pH stability, lower residual green fluorescence, and greater efficiency of excitation with red lasers. The red-shifted excitation and emission spectra, as compared to other far-red proteins, allows utilizing TagRFP657 in flow cytometry and fluorescence microscopy simultaneously with orange or near-red fluorescence proteins. TagRFP657 is shown to be an efficient protein tag for the superresolution fluorescence imaging using a commercially available stimulated emission depletion microscope.

摘要

远红荧光蛋白用于深层组织和全动物成像以及在红光波长范围内的多色标记,以及在流式细胞术和荧光显微镜中用标准红光激光器激发的探针。基于受激发射损耗方法的快速发展的超高分辨率显微镜也需要基因编码的单体探针来在分子水平上标记细胞内蛋白质。基于单体 mKate 变体,我们开发了一种远红荧光蛋白 TagRFP657,其激发/发射最大值为 611/657nm。与现有的单体远红荧光蛋白相比,TagRFP657 具有几个优点,包括更高的光稳定性、更好的 pH 稳定性、更低的残留绿光荧光和更高的红光激光激发效率。与其他远红荧光蛋白相比,激发和发射光谱的红移允许 TagRFP657 在流式细胞术和荧光显微镜中与橙色或近红外荧光蛋白同时使用。实验表明,TagRFP657 是一种用于使用市售受激发射损耗显微镜进行超高分辨率荧光成像的高效蛋白质标记物。

相似文献

2
A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling.
Biochemistry. 2009 Sep 8;48(35):8279-81. doi: 10.1021/bi900870u.
3
Multiparametric flow cytometry using near-infrared fluorescent proteins engineered from bacterial phytochromes.
PLoS One. 2015 Mar 26;10(3):e0122342. doi: 10.1371/journal.pone.0122342. eCollection 2015.
4
Guide to red fluorescent proteins and biosensors for flow cytometry.
Methods Cell Biol. 2011;102:431-61. doi: 10.1016/B978-0-12-374912-3.00017-1.
6
A far-red emitting fluorescent marker protein, mGarnet2, for microscopy and STED nanoscopy.
Chem Commun (Camb). 2017 Jan 10;53(5):979-982. doi: 10.1039/c6cc09081h.
7
A photoswitchable orange-to-far-red fluorescent protein, PSmOrange.
Nat Methods. 2011 Jul 31;8(9):771-7. doi: 10.1038/nmeth.1664.
8
Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging.
Sci Rep. 2015 Dec 9;5:18006. doi: 10.1038/srep18006.
9
10
A FRET-facilitated photoswitching using an orange fluorescent protein with the fast photoconversion kinetics.
J Am Chem Soc. 2012 Sep 12;134(36):14789-99. doi: 10.1021/ja3034137. Epub 2012 Aug 27.

引用本文的文献

1
Ty retrotransposon element based multiple integration toolkit for .
Synth Syst Biotechnol. 2025 Apr 23;10(3):887-896. doi: 10.1016/j.synbio.2025.04.011. eCollection 2025 Sep.
2
Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals.
Chem Rev. 2024 Nov 27;124(22):12573-12660. doi: 10.1021/acs.chemrev.4c00293. Epub 2024 Nov 13.
3
Fluorescent Water-Soluble Polycationic Chitosan Polymers as Markers for Biological 3D Imaging.
Chem Biomed Imaging. 2024 Sep 10;2(10):721-730. doi: 10.1021/cbmi.4c00028. eCollection 2024 Oct 28.
5
Pushing the Resolution Limit of Stimulated Emission Depletion Optical Nanoscopy.
Int J Mol Sci. 2023 Dec 19;25(1):26. doi: 10.3390/ijms25010026.
6
Recent Progress of Natural and Recombinant Phycobiliproteins as Fluorescent Probes.
Mar Drugs. 2023 Oct 31;21(11):572. doi: 10.3390/md21110572.
7
8
Fluorescent Probes for STED Optical Nanoscopy.
Nanomaterials (Basel). 2021 Dec 22;12(1):21. doi: 10.3390/nano12010021.
9
Rapid directed molecular evolution of fluorescent proteins in mammalian cells.
Protein Sci. 2022 Mar;31(3):728-751. doi: 10.1002/pro.4261. Epub 2021 Dec 30.
10
Near-infrared and far-red genetically encoded indicators of neuronal activity.
J Neurosci Methods. 2021 Oct 1;362:109314. doi: 10.1016/j.jneumeth.2021.109314. Epub 2021 Aug 8.

本文引用的文献

1
STED nanoscopy in living cells using Fluorogen Activating Proteins.
Bioconjug Chem. 2009;20(10):1843-1847. doi: 10.1021/bc900249e.
2
Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals.
Chem Biol. 2009 Nov 25;16(11):1169-79. doi: 10.1016/j.chembiol.2009.10.009.
3
A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling.
Biochemistry. 2009 Sep 8;48(35):8279-81. doi: 10.1021/bi900870u.
4
Far-red fluorescent tags for protein imaging in living tissues.
Biochem J. 2009 Mar 15;418(3):567-74. doi: 10.1042/BJ20081949.
5
Microscopy and its focal switch.
Nat Methods. 2009 Jan;6(1):24-32. doi: 10.1038/nmeth.1291.
6
7
Bright far-red fluorescent protein for whole-body imaging.
Nat Methods. 2007 Sep;4(9):741-6. doi: 10.1038/nmeth1083. Epub 2007 Aug 26.
8
Bright monomeric red fluorescent protein with an extended fluorescence lifetime.
Nat Methods. 2007 Jul;4(7):555-7. doi: 10.1038/nmeth1062. Epub 2007 Jun 17.
9
Evolution of new nonantibody proteins via iterative somatic hypermutation.
Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16745-9. doi: 10.1073/pnas.0407752101. Epub 2004 Nov 19.
10
Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins.
Chem Biol. 2004 Jun;11(6):845-54. doi: 10.1016/j.chembiol.2004.04.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验