Suppr超能文献

支持具有过量膜储备的双层膜:用于重建膜出芽和裂变的模板。

Supported bilayers with excess membrane reservoir: a template for reconstituting membrane budding and fission.

机构信息

Department of Cell Biology, Scripps Research Institute, La Jolla, California, USA.

出版信息

Biophys J. 2010 Jul 21;99(2):517-25. doi: 10.1016/j.bpj.2010.04.036.

Abstract

A complete mechanistic understanding of membrane-localized processes in vesicular transport, such as membrane budding and fission, requires their reconstitution with biochemically-defined components from a biochemically-defined substrate. Supported bilayers formed by vesicle fusion represent an attractive substrate for this purpose. However, conventional supported bilayers lack a sufficient membrane reservoir to recreate membrane budding and fission events. We describe the formation of supported bilayers with excess membrane reservoir (SUPER) templates from the fusion of liposomes containing negatively charged lipids on silica beads under high-ionic-strength conditions. Using a fluorescence microscopy-based assay to monitor early and late stages of supported bilayer formation, we show that an increase in ionic strength leads to an increase in the rates of liposome adsorption and subsequent fusion during formation of supported bilayers. The two rates, however, increase disproportionally, leading to accumulation of excess reservoir with an increase in ionic strength. SUPER templates allow the seamless application of microscopy-based assays to analyze membrane-localized processes together with sedimentation-based assays to isolate vesicular and nonvesicular products released from the membrane. The results presented here emphasize the general utility of these templates for analyzing vesicular and nonvesicular transport processes.

摘要

要全面了解囊泡运输中膜定位过程(如膜出芽和裂变)的机制,需要用生物化学定义的底物中的生化定义组件进行重建。通过囊泡融合形成的支撑双层代表了一种有吸引力的底物。然而,传统的支撑双层缺乏足够的膜储备来重新创建膜出芽和裂变事件。我们描述了在高离子强度条件下,带负电荷的脂质的脂质体在硅胶珠上融合,形成具有过量膜储备(SUPER)模板的支撑双层。使用基于荧光显微镜的测定法来监测支撑双层形成的早期和晚期阶段,我们表明离子强度的增加会导致在形成支撑双层时,脂质体吸附和随后融合的速率增加。然而,这两个速率不成比例地增加,导致在离子强度增加时积累了过量的储备。SUPER 模板允许无缝应用基于显微镜的测定法来分析膜定位过程,以及基于沉降的测定法来分离从膜释放的囊泡和非囊泡产物。这里呈现的结果强调了这些模板在分析囊泡和非囊泡运输过程中的普遍适用性。

相似文献

2
Analyzing membrane remodeling and fission using supported bilayers with excess membrane reservoir.
Nat Protoc. 2013 Jan;8(1):213-22. doi: 10.1038/nprot.2012.152. Epub 2013 Jan 3.
3
A simple supported tubulated bilayer system for evaluating protein-mediated membrane remodeling.
Chem Phys Lipids. 2018 Sep;215:18-28. doi: 10.1016/j.chemphyslip.2018.06.002. Epub 2018 Jul 22.
4
Vesicle adsorption on mesoporous silica and titania.
Langmuir. 2010 Nov 16;26(22):16630-3. doi: 10.1021/la102719w. Epub 2010 Oct 8.
5
Nanoscale departures: excess lipid leaving the surface during supported lipid bilayer formation.
Langmuir. 2013 Dec 10;29(49):15283-92. doi: 10.1021/la401354j. Epub 2013 Nov 22.
6
Early steps of supported bilayer formation probed by single vesicle fluorescence assays.
Biophys J. 2002 Dec;83(6):3371-9. doi: 10.1016/S0006-3495(02)75337-X.
7
Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers.
Biochim Biophys Acta. 1992 Jan 31;1103(2):307-16. doi: 10.1016/0005-2736(92)90101-q.
8
Frequent fusion of liposomes to a positively charged planar bilayer without calcium ions.
J Biochem. 1993 Oct;114(4):487-91. doi: 10.1093/oxfordjournals.jbchem.a124204.
9
Simulations of lipid transfer between a supported lipid bilayer and adsorbing vesicles.
Colloids Surf B Biointerfaces. 2010 Feb 1;75(2):454-65. doi: 10.1016/j.colsurfb.2009.09.019. Epub 2009 Sep 23.
10
Bilayer edges catalyze supported lipid bilayer formation.
Biophys J. 2010 Jan 6;98(1):85-92. doi: 10.1016/j.bpj.2009.09.050.

引用本文的文献

1
Asgard archaea reveal the conserved principles of ESCRT-III membrane remodeling.
Sci Adv. 2025 Feb 7;11(6):eads5255. doi: 10.1126/sciadv.ads5255.
2
Mechanism for Vipp1 spiral formation, ring biogenesis, and membrane repair.
Nat Struct Mol Biol. 2025 Mar;32(3):571-584. doi: 10.1038/s41594-024-01401-8. Epub 2024 Nov 11.
3
Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides.
J Cell Biol. 2024 Jun 3;223(6). doi: 10.1083/jcb.202310095. Epub 2024 Apr 5.
4
SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis.
PLoS Biol. 2023 Sep 18;21(9):e3002305. doi: 10.1371/journal.pbio.3002305. eCollection 2023 Sep.
5
The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy.
Mol Cell. 2023 Jun 15;83(12):2045-2058.e9. doi: 10.1016/j.molcel.2023.04.022. Epub 2023 May 15.
6
Membrane stretching activates calcium permeability of a putative channel Pkd2 during fission yeast cytokinesis.
Mol Biol Cell. 2022 Dec 1;33(14):ar134. doi: 10.1091/mbc.E22-07-0248. Epub 2022 Oct 6.
7
Synthesis and Reconstitution Using Mammalian Cell-Free Lysates Enables the Systematic Study of the Regulation of LINC Complex Assembly.
Biochemistry. 2022 Jul 19;61(14):1495-1507. doi: 10.1021/acs.biochem.2c00118. Epub 2022 Jun 23.
8
Engineering Functional Membrane-Membrane Interfaces by InterSpy.
Small. 2023 Mar;19(13):e2202104. doi: 10.1002/smll.202202104. Epub 2022 May 26.
9
A mechanism for exocyst-mediated tethering via Arf6 and PIP5K1C-driven phosphoinositide conversion.
Curr Biol. 2022 Jul 11;32(13):2821-2833.e6. doi: 10.1016/j.cub.2022.04.089. Epub 2022 May 23.
10
Protein-Protein Interactions on Membrane Surfaces Analysed Using Pull-Downs with Supported Bilayers on Silica Beads.
J Membr Biol. 2022 Oct;255(4-5):591-597. doi: 10.1007/s00232-022-00222-4. Epub 2022 Feb 28.

本文引用的文献

1
Bilayer edges catalyze supported lipid bilayer formation.
Biophys J. 2010 Jan 6;98(1):85-92. doi: 10.1016/j.bpj.2009.09.050.
2
ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions.
EMBO J. 2010 Jan 20;29(2):292-303. doi: 10.1038/emboj.2009.341. Epub 2009 Nov 19.
3
Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission.
Mol Biol Cell. 2009 Nov;20(22):4630-9. doi: 10.1091/mbc.e09-08-0683. Epub 2009 Sep 23.
4
Conserved functions of membrane active GTPases in coated vesicle formation.
Science. 2009 Sep 4;325(5945):1217-20. doi: 10.1126/science.1171004.
5
An intramolecular signaling element that modulates dynamin function in vitro and in vivo.
Mol Biol Cell. 2009 Aug;20(15):3561-71. doi: 10.1091/mbc.e09-04-0318. Epub 2009 Jun 10.
7
Formation of supported bilayers on silica substrates.
Langmuir. 2009 Jun 16;25(12):6997-7005. doi: 10.1021/la900181c.
8
GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission.
Cell. 2008 Dec 26;135(7):1276-86. doi: 10.1016/j.cell.2008.11.028. Epub 2008 Dec 11.
9
Real-time visualization of dynamin-catalyzed membrane fission and vesicle release.
Cell. 2008 Dec 26;135(7):1263-75. doi: 10.1016/j.cell.2008.11.020. Epub 2008 Dec 11.
10
Formation of complex three-dimensional structures in supported lipid bilayers.
Langmuir. 2009 Jan 6;25(1):71-4. doi: 10.1021/la8033269.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验