Suppr超能文献

在质膜上形成 K-Ras 纳米簇的数学建模。

Mathematical modeling of K-Ras nanocluster formation on the plasma membrane.

机构信息

Department of Mathematics, University of Glasgow, Glasgow, United Kingdom.

出版信息

Biophys J. 2010 Jul 21;99(2):534-43. doi: 10.1016/j.bpj.2010.04.055.

Abstract

K-Ras functions as a critical node in the mitogen-activated protein kinase (MAPK) pathway that regulates key cellular functions including proliferation, differentiation, and apoptosis. Following growth factor receptor activation K-Ras.GTP forms nanoclusters on the plasma membrane through interaction with the scaffold protein galectin-3. The generation of nanoclusters is essential for high fidelity signal transduction via the MAPK pathway. To explore the mechanisms underlying K-Ras.GTP nanocluster formation, we developed a mathematical model of K-Ras-galectin-3 interactions. We designed a computational method to calculate protein collision rates based on experimentally determined protein diffusion rates and diffusion mechanisms and used a genetic algorithm to search the values of key model parameters. The optimal estimated model parameters were validated using experimental data. The resulting model accurately replicates critical features of K-Ras nanoclustering, including a fixed ratio of clustered K-Ras.GTP to monomeric K-Ras.GTP that is independent of the concentration of K-Ras.GTP. The model reproduces experimental results showing that the cytosolic level of galectin-3 determines the magnitude of the K-Ras.GTP clustered fraction and illustrates that nanoclustering is regulated by key nonequilibrium processes. Our kinetic model identifies a potential biophysical mechanism for K-Ras nanoclustering and suggests general principles that may be relevant for other plasma-membrane-localized proteins.

摘要

K-Ras 作为丝裂原活化蛋白激酶 (MAPK) 途径中的关键节点,调节包括增殖、分化和凋亡在内的关键细胞功能。在生长因子受体激活后,K-Ras.GTP 通过与支架蛋白半乳糖凝集素-3 的相互作用在质膜上形成纳米簇。纳米簇的形成对于通过 MAPK 途径进行高保真信号转导至关重要。为了探索 K-Ras.GTP 纳米簇形成的机制,我们开发了一个 K-Ras-半乳糖凝集素-3 相互作用的数学模型。我们设计了一种计算蛋白质碰撞率的计算方法,该方法基于实验测定的蛋白质扩散率和扩散机制,并使用遗传算法搜索关键模型参数的值。使用实验数据验证了最佳估计模型参数。得到的模型准确地复制了 K-Ras 纳米簇的关键特征,包括与 K-Ras.GTP 浓度无关的聚集 K-Ras.GTP 与单体 K-Ras.GTP 的固定比例。该模型再现了实验结果,表明细胞质中半乳糖凝集素-3 的水平决定了 K-Ras.GTP 聚集部分的大小,并表明纳米簇的形成受到关键非平衡过程的调节。我们的动力学模型确定了 K-Ras 纳米簇形成的潜在生物物理机制,并提出了可能对其他位于质膜的蛋白质具有普遍意义的原则。

相似文献

1
Mathematical modeling of K-Ras nanocluster formation on the plasma membrane.
Biophys J. 2010 Jul 21;99(2):534-43. doi: 10.1016/j.bpj.2010.04.055.
2
K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3.
Cancer Res. 2008 Aug 15;68(16):6608-16. doi: 10.1158/0008-5472.CAN-08-1117.
3
Electrostatic interactions positively regulate K-Ras nanocluster formation and function.
Mol Cell Biol. 2008 Jul;28(13):4377-85. doi: 10.1128/MCB.00050-08. Epub 2008 May 5.
4
Nucleophosmin and nucleolin regulate K-Ras plasma membrane interactions and MAPK signal transduction.
J Biol Chem. 2009 Oct 9;284(41):28410-28419. doi: 10.1074/jbc.M109.001537. Epub 2009 Aug 6.
5
H-Ras nanocluster stability regulates the magnitude of MAPK signal output.
PLoS One. 2010 Aug 5;5(8):e11991. doi: 10.1371/journal.pone.0011991.
6
Galectin-3 promotes chronic activation of K-Ras and differentiation block in malignant thyroid carcinomas.
Mol Cancer Ther. 2010 Aug;9(8):2208-19. doi: 10.1158/1535-7163.MCT-10-0262. Epub 2010 Aug 3.
7
Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity.
J Biol Chem. 2004 Aug 13;279(33):34922-30. doi: 10.1074/jbc.M312697200. Epub 2004 Jun 17.
8
Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering.
Sci Rep. 2016 Apr 18;6:24165. doi: 10.1038/srep24165.
9
Galectin-1 is a novel structural component and a major regulator of h-ras nanoclusters.
Mol Biol Cell. 2008 Apr;19(4):1404-14. doi: 10.1091/mbc.e07-10-1053. Epub 2008 Jan 30.
10
Cooperativity and oscillations: Regulatory mechanisms of K-Ras nanoclusters.
Comput Biol Med. 2023 Nov;166:107455. doi: 10.1016/j.compbiomed.2023.107455. Epub 2023 Sep 9.

引用本文的文献

2
Lifetime of actin-dependent protein nanoclusters.
Biophys J. 2023 Jan 17;122(2):290-300. doi: 10.1016/j.bpj.2022.12.015. Epub 2022 Dec 14.
3
Galectin-3 (MAC-2) controls phagocytosis and macropinocytosis through intracellular and extracellular mechanisms.
Front Cell Neurosci. 2022 Oct 5;16:949079. doi: 10.3389/fncel.2022.949079. eCollection 2022.
4
RAS Nanoclusters Selectively Sort Distinct Lipid Headgroups and Acyl Chains.
Front Mol Biosci. 2021 Jun 17;8:686338. doi: 10.3389/fmolb.2021.686338. eCollection 2021.
5
The Ras dimer structure.
Chem Sci. 2021 May 4;12(23):8178-8189. doi: 10.1039/d1sc00957e.
6
The Nanoscale Organization of the Plasma Membrane and Its Importance in Signaling: A Proteolipid Perspective.
Plant Physiol. 2020 Apr;182(4):1682-1696. doi: 10.1104/pp.19.01349. Epub 2019 Dec 19.
7
Organization of Farnesylated, Carboxymethylated KRAS4B on Membranes.
J Mol Biol. 2019 Sep 6;431(19):3706-3717. doi: 10.1016/j.jmb.2019.07.025. Epub 2019 Jul 19.
8
10
Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane.
J Biol Chem. 2019 Feb 8;294(6):2193-2207. doi: 10.1074/jbc.RA118.005669. Epub 2018 Dec 17.

本文引用的文献

1
K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3.
Cancer Res. 2008 Aug 15;68(16):6608-16. doi: 10.1158/0008-5472.CAN-08-1117.
2
Using plasma membrane nanoclusters to build better signaling circuits.
Trends Cell Biol. 2008 Aug;18(8):364-71. doi: 10.1016/j.tcb.2008.05.006. Epub 2008 Jul 10.
3
Electrostatic interactions positively regulate K-Ras nanocluster formation and function.
Mol Cell Biol. 2008 Jul;28(13):4377-85. doi: 10.1128/MCB.00050-08. Epub 2008 May 5.
4
Plasma membrane domain organization regulates EGFR signaling in tumor cells.
J Cell Biol. 2007 Oct 22;179(2):341-56. doi: 10.1083/jcb.200611106. Epub 2007 Oct 15.
5
A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A.
Biophys J. 2008 Mar 1;94(5):1667-80. doi: 10.1529/biophysj.107.118760. Epub 2007 Oct 5.
7
Modelling and simulation techniques for membrane biology.
Brief Bioinform. 2007 Jul;8(4):234-44. doi: 10.1093/bib/bbm033. Epub 2007 Aug 9.
8
Plasma membrane nanoswitches generate high-fidelity Ras signal transduction.
Nat Cell Biol. 2007 Aug;9(8):905-14. doi: 10.1038/ncb1615. Epub 2007 Jul 8.
9
Toward a mathematical model of the assembly and disassembly of membrane microdomains: comparison with experimental models.
Biophys J. 2007 Jun 15;92(12):4145-56. doi: 10.1529/biophysj.106.090233. Epub 2007 Mar 23.
10
Sources of anomalous diffusion on cell membranes: a Monte Carlo study.
Biophys J. 2007 Mar 15;92(6):1975-87. doi: 10.1529/biophysj.105.076869. Epub 2006 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验