Department of Mathematics, University of Glasgow, Glasgow, United Kingdom.
Biophys J. 2010 Jul 21;99(2):534-43. doi: 10.1016/j.bpj.2010.04.055.
K-Ras functions as a critical node in the mitogen-activated protein kinase (MAPK) pathway that regulates key cellular functions including proliferation, differentiation, and apoptosis. Following growth factor receptor activation K-Ras.GTP forms nanoclusters on the plasma membrane through interaction with the scaffold protein galectin-3. The generation of nanoclusters is essential for high fidelity signal transduction via the MAPK pathway. To explore the mechanisms underlying K-Ras.GTP nanocluster formation, we developed a mathematical model of K-Ras-galectin-3 interactions. We designed a computational method to calculate protein collision rates based on experimentally determined protein diffusion rates and diffusion mechanisms and used a genetic algorithm to search the values of key model parameters. The optimal estimated model parameters were validated using experimental data. The resulting model accurately replicates critical features of K-Ras nanoclustering, including a fixed ratio of clustered K-Ras.GTP to monomeric K-Ras.GTP that is independent of the concentration of K-Ras.GTP. The model reproduces experimental results showing that the cytosolic level of galectin-3 determines the magnitude of the K-Ras.GTP clustered fraction and illustrates that nanoclustering is regulated by key nonequilibrium processes. Our kinetic model identifies a potential biophysical mechanism for K-Ras nanoclustering and suggests general principles that may be relevant for other plasma-membrane-localized proteins.
K-Ras 作为丝裂原活化蛋白激酶 (MAPK) 途径中的关键节点,调节包括增殖、分化和凋亡在内的关键细胞功能。在生长因子受体激活后,K-Ras.GTP 通过与支架蛋白半乳糖凝集素-3 的相互作用在质膜上形成纳米簇。纳米簇的形成对于通过 MAPK 途径进行高保真信号转导至关重要。为了探索 K-Ras.GTP 纳米簇形成的机制,我们开发了一个 K-Ras-半乳糖凝集素-3 相互作用的数学模型。我们设计了一种计算蛋白质碰撞率的计算方法,该方法基于实验测定的蛋白质扩散率和扩散机制,并使用遗传算法搜索关键模型参数的值。使用实验数据验证了最佳估计模型参数。得到的模型准确地复制了 K-Ras 纳米簇的关键特征,包括与 K-Ras.GTP 浓度无关的聚集 K-Ras.GTP 与单体 K-Ras.GTP 的固定比例。该模型再现了实验结果,表明细胞质中半乳糖凝集素-3 的水平决定了 K-Ras.GTP 聚集部分的大小,并表明纳米簇的形成受到关键非平衡过程的调节。我们的动力学模型确定了 K-Ras 纳米簇形成的潜在生物物理机制,并提出了可能对其他位于质膜的蛋白质具有普遍意义的原则。