Reichert Fanny, Rotshenker Shlomo
Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University, Jerusalem, Israel.
Front Cell Neurosci. 2019 Mar 14;13:90. doi: 10.3389/fncel.2019.00090. eCollection 2019.
Myelin surrounding central nervous system (CNS) axons breaks down in multiple sclerosis (MS) and following traumatic axonal injury. Myelin-debris so produced is harmful to repair since it impedes remyelination in MS and the regeneration of traumatized axons. These devastating outcomes are largely due to inefficient removal by phagocytosis of myelin-debris by microglia. Therefore, revealing mechanisms that control phagocytosis is vital. We previously showed that in phagocytosis, filopodia and lamellipodia extend/engulf and then retract/internalize myelin-debris. Moreover, cofilin activates phagocytosis by advancing the remodeling of actin filaments (i.e., existing filaments disassemble and new filaments assemble in a new configuration), causing filopodia/lamellipodia to protrude, and furthermore, Galectin-3 (formally named MAC-2) activates phagocytosis by enhancing K-Ras.GTP/PI3K signaling that leads to actin/myosin-based contraction, causing filopodia/lamellipodia to retract. To understand further how Galectin-3 controls phagocytosis we knocked-down (KD) Galectin-3 expression in cultured primary microglia using Galectin-3 small-hairpin RNA (Gal-3-shRNA). KD Galectin-3 protein levels reduced phagocytosis extensively. Further, inhibiting nucleolin (NCL) and nucleophosmin (NPM), which advance K-Ras signaling as does Galectin-3, also reduced phagocytosis. Strikingly and unexpectedly, knocking down Galectin-3 resulted in a dramatic transformation of microglia morphology from "amoeboid-like" to "branched-like," rearrangement of actin filaments and inactivation of cofilin. Thus, Galectin-3 may control microglia morphology and phagocytosis by regulating the activation state of cofilin, which, in turn, affects how actin filaments organize and how stable they are. Furthermore, our current and previous findings together suggest that Galectin-3 activates phagocytosis by targeting the cytoskeleton twice: first, by advancing cofilin activation, causing filopodia/lamellipodia to extend/engulf myelin-debris. Second, by advancing actin/myosin-based contraction through K-Ras.GTP/PI3K signaling, causing filopodia/lamellipodia to retract/internalize myelin-debris.
在多发性硬化症(MS)以及创伤性轴突损伤后,围绕中枢神经系统(CNS)轴突的髓磷脂会发生分解。如此产生的髓磷脂碎片对修复有害,因为它会阻碍MS中的髓鞘再生以及受创伤轴突的再生。这些破坏性后果很大程度上是由于小胶质细胞对髓磷脂碎片的吞噬清除效率低下。因此,揭示控制吞噬作用的机制至关重要。我们之前表明,在吞噬过程中,丝状伪足和片状伪足会伸出/吞噬然后缩回/内化髓磷脂碎片。此外,丝切蛋白通过促进肌动蛋白丝的重塑(即现有的丝解体,新的丝以新的构型组装)来激活吞噬作用,导致丝状伪足/片状伪足突出,而且,半乳糖凝集素-3(原名为MAC-2)通过增强导致基于肌动蛋白/肌球蛋白收缩的K-Ras.GTP/PI3K信号传导来激活吞噬作用,导致丝状伪足/片状伪足缩回。为了进一步了解半乳糖凝集素-3如何控制吞噬作用,我们使用半乳糖凝集素-3小发夹RNA(Gal-3-shRNA)在培养的原代小胶质细胞中敲低(KD)半乳糖凝集素-3的表达。KD半乳糖凝集素-3蛋白水平广泛降低了吞噬作用。此外,抑制核仁素(NCL)和核磷蛋白(NPM),它们与半乳糖凝集素-3一样促进K-Ras信号传导,也降低了吞噬作用。令人惊讶且出乎意料的是,敲低半乳糖凝集素-3导致小胶质细胞形态从“类阿米巴样”急剧转变为“分支样”,肌动蛋白丝重新排列且丝切蛋白失活。因此,半乳糖凝集素-3可能通过调节丝切蛋白的激活状态来控制小胶质细胞形态和吞噬作用,而丝切蛋白的激活状态又反过来影响肌动蛋白丝的组织方式及其稳定性。此外,我们目前和之前的研究结果共同表明,半乳糖凝集素-3通过两次靶向细胞骨架来激活吞噬作用:首先,通过促进丝切蛋白激活,导致丝状伪足/片状伪足伸出/吞噬髓磷脂碎片。其次,通过K-Ras.GTP/PI3K信号传导促进基于肌动蛋白/肌球蛋白的收缩,导致丝状伪足/片状伪足缩回/内化髓磷脂碎片。