Suppr超能文献

LOGISMOS--多层次最优图图像分割多个物体和表面:膝关节软骨分割。

LOGISMOS--layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint.

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA.

出版信息

IEEE Trans Med Imaging. 2010 Dec;29(12):2023-37. doi: 10.1109/TMI.2010.2058861. Epub 2010 Jul 19.

Abstract

A novel method for simultaneous segmentation of multiple interacting surfaces belonging to multiple interacting objects, called LOGISMOS (layered optimal graph image segmentation of multiple objects and surfaces), is reported. The approach is based on the algorithmic incorporation of multiple spatial inter-relationships in a single n-dimensional graph, followed by graph optimization that yields a globally optimal solution. The LOGISMOS method's utility and performance are demonstrated on a bone and cartilage segmentation task in the human knee joint. Although trained on only a relatively small number of nine example images, this system achieved good performance. Judged by dice similarity coefficients (DSC) using a leave-one-out test, DSC values of 0.84 ± 0.04, 0.80 ± 0.04 and 0.80 ± 0.04 were obtained for the femoral, tibial, and patellar cartilage regions, respectively. These are excellent DSC values, considering the narrow-sheet character of the cartilage regions. Similarly, low signed mean cartilage thickness errors were obtained when compared to a manually-traced independent standard in 60 randomly selected 3-D MR image datasets from the Osteoarthritis Initiative database-0.11 ± 0.24, 0.05 ± 0.23, and 0.03 ± 0.17 mm for the femoral, tibial, and patellar cartilage thickness, respectively. The average signed surface positioning errors for the six detected surfaces ranged from 0.04 ± 0.12 mm to 0.16 ± 0.22 mm. The reported LOGISMOS framework provides robust and accurate segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multiobject multisurface segmentation problems.

摘要

一种用于同时分割多个相互作用的表面的新方法,称为 LOGISMOS(分层最优多物体和表面的图形分割),被报道。该方法基于在单个 n 维图形中算法地合并多个空间相互关系,然后进行图形优化,从而得到全局最优解。LOGISMOS 方法在人体膝关节的骨和软骨分割任务中得到了验证。尽管仅在相对较小的九个示例图像上进行了训练,但该系统仍取得了良好的性能。通过使用留一法测试进行的骰子相似系数(DSC)判断,股骨、胫骨和髌骨软骨区域的 DSC 值分别为 0.84 ± 0.04、0.80 ± 0.04 和 0.80 ± 0.04。考虑到软骨区域的窄片特征,这些都是非常优秀的 DSC 值。同样,与 Osteoarthritis Initiative 数据库中的 60 个随机选择的 3-D MR 图像数据集的手动跟踪独立标准相比,获得的低签名平均软骨厚度误差较小-股骨、胫骨和髌骨软骨厚度的分别为 0.11 ± 0.24、0.05 ± 0.23 和 0.03 ± 0.17 mm。六个检测到的表面的平均签名表面定位误差范围为 0.04 ± 0.12 mm 至 0.16 ± 0.22 mm。所报道的 LOGISMOS 框架提供了股骨、胫骨和髌骨的膝关节骨和软骨表面的强大而准确的分割。作为一种通用的分割工具,所开发的框架可以应用于广泛的多目标多表面分割问题。

相似文献

1
LOGISMOS--layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint.
IEEE Trans Med Imaging. 2010 Dec;29(12):2023-37. doi: 10.1109/TMI.2010.2058861. Epub 2010 Jul 19.
2
LOGISMOS-B: layered optimal graph image segmentation of multiple objects and surfaces for the brain.
IEEE Trans Med Imaging. 2014 Jun;33(6):1220-35. doi: 10.1109/TMI.2014.2304499. Epub 2014 Feb 7.
4
Assisted annotation in Deep LOGISMOS: Simultaneous multi-compartment 3D MRI segmentation of calf muscles.
Med Phys. 2023 Aug;50(8):4916-4929. doi: 10.1002/mp.16284. Epub 2023 Feb 16.
5
Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee.
IEEE Trans Med Imaging. 2010 Jan;29(1):55-64. doi: 10.1109/TMI.2009.2024743. Epub 2009 Jun 10.
7
Automatic segmentation of articular cartilage in magnetic resonance images of the knee.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):186-94. doi: 10.1007/978-3-540-75759-7_23.

引用本文的文献

1
2
Evaluation of Vestibular Schwannoma Size across Time: How Well Do the Experts Perform and What Can Be Improved?
AJNR Am J Neuroradiol. 2025 Jun 3;46(6):1249-1254. doi: 10.3174/ajnr.A8614.
4
Hybrid deep learning and optimal graph search method for optical coherence tomography layer segmentation in diseases affecting the optic nerve.
Biomed Opt Express. 2024 May 9;15(6):3681-3698. doi: 10.1364/BOE.516045. eCollection 2024 Jun 1.
5
Automated 3D cytoplasm segmentation in soft X-ray tomography.
iScience. 2024 Apr 29;27(6):109856. doi: 10.1016/j.isci.2024.109856. eCollection 2024 Jun 21.
7
A Technique to Enable Efficient Adaptive Radiation Therapy: Automated Contouring of Prostate and Adjacent Organs.
Adv Radiat Oncol. 2023 Aug 7;9(1):101336. doi: 10.1016/j.adro.2023.101336. eCollection 2024 Jan.
8
Model Properties and Clinical Application in the Finite Element Analysis of Knee Joint: A Review.
Orthop Surg. 2024 Feb;16(2):289-302. doi: 10.1111/os.13980. Epub 2024 Jan 4.
10
Assisted annotation in Deep LOGISMOS: Simultaneous multi-compartment 3D MRI segmentation of calf muscles.
Med Phys. 2023 Aug;50(8):4916-4929. doi: 10.1002/mp.16284. Epub 2023 Feb 16.

本文引用的文献

1
Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):827-35. doi: 10.1007/978-3-642-04271-3_100.
2
Discriminative, semantic segmentation of brain tissue in MR images.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):558-65. doi: 10.1007/978-3-642-04271-3_68.
3
Anatomically corresponded regional analysis of cartilage in asymptomatic and osteoarthritic knees by statistical shape modelling of the bone.
IEEE Trans Med Imaging. 2010 Aug;29(8):1541-59. doi: 10.1109/TMI.2010.2047653. Epub 2010 Apr 8.
4
Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee.
IEEE Trans Med Imaging. 2010 Jan;29(1):55-64. doi: 10.1109/TMI.2009.2024743. Epub 2009 Jun 10.
5
Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images.
IEEE Trans Med Imaging. 2009 Sep;28(9):1436-47. doi: 10.1109/TMI.2009.2016958. Epub 2009 Mar 10.
6
Efficient segmentation by sparse pixel classification.
IEEE Trans Med Imaging. 2008 Oct;27(10):1525-34. doi: 10.1109/TMI.2008.923961.
7
Automatic segmentation of articular cartilage in magnetic resonance images of the knee.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):186-94. doi: 10.1007/978-3-540-75759-7_23.
8
Inter-subject comparison of MRI knee cartilage thickness.
Med Image Anal. 2008 Apr;12(2):120-35. doi: 10.1016/j.media.2007.08.002. Epub 2007 Aug 31.
10
Simultaneous segmentation of multiple closed surfaces using optimal graph searching.
Inf Process Med Imaging. 2005;19:406-17. doi: 10.1007/11505730_34.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验