Suppr超能文献

LOGISMOS-B:用于大脑的多物体和表面的分层最优图形图像分割

LOGISMOS-B: layered optimal graph image segmentation of multiple objects and surfaces for the brain.

作者信息

Oguz Ipek, Sonka Milan

出版信息

IEEE Trans Med Imaging. 2014 Jun;33(6):1220-35. doi: 10.1109/TMI.2014.2304499. Epub 2014 Feb 7.

Abstract

Automated reconstruction of the cortical surface is one of the most challenging problems in the analysis of human brain magnetic resonance imaging (MRI). A desirable segmentation must be both spatially and topologically accurate, as well as robust and computationally efficient. We propose a novel algorithm, LOGISMOS-B, based on probabilistic tissue classification, generalized gradient vector flows and the LOGISMOS graph segmentation framework. Quantitative results on MRI datasets from both healthy subjects and multiple sclerosis patients using a total of 16,800 manually placed landmarks illustrate the excellent performance of our algorithm with respect to spatial accuracy. Remarkably, the average signed error was only 0.084 mm for the white matter and 0.008 mm for the gray matter, even in the presence of multiple sclerosis lesions. Statistical comparison shows that LOGISMOS-B produces a significantly more accurate cortical reconstruction than FreeSurfer, the current state-of-the-art approach (p << 0.001). Furthermore, LOGISMOS-B enjoys a run time that is less than a third of that of FreeSurfer, which is both substantial, considering the latter takes 10 h/subject on average, and a statistically significant speedup.

摘要

皮质表面的自动重建是人类脑磁共振成像(MRI)分析中最具挑战性的问题之一。理想的分割必须在空间和拓扑上都准确无误,同时还要稳健且计算高效。我们提出了一种基于概率组织分类、广义梯度向量流和LOGISMOS图分割框架的新算法——LOGISMOS-B。使用总共16800个手动放置的地标对来自健康受试者和多发性硬化症患者的MRI数据集进行的定量结果表明,我们的算法在空间准确性方面表现出色。值得注意的是,即使存在多发性硬化症病变,白质的平均符号误差仅为0.084毫米,灰质的平均符号误差仅为0.008毫米。统计比较表明,LOGISMOS-B生成的皮质重建比当前最先进的方法FreeSurfer精确得多(p << 0.001)。此外,LOGISMOS-B的运行时间不到FreeSurfer的三分之一,考虑到后者平均每个受试者需要10小时,这是一个相当大的提速,且在统计上具有显著意义。

相似文献

3
Robust cortical thickness measurement with LOGISMOS-B.使用LOGISMOS-B进行稳健的皮质厚度测量。
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):722-30. doi: 10.1007/978-3-319-10404-1_90.
5
RATS: Rapid Automatic Tissue Segmentation in rodent brain MRI.RATS:啮齿动物脑 MRI 的快速自动组织分割。
J Neurosci Methods. 2014 Jan 15;221:175-82. doi: 10.1016/j.jneumeth.2013.09.021. Epub 2013 Oct 18.

引用本文的文献

2
Synthetic Atrophy for Longitudinal Cortical Surface Analyses.用于纵向皮质表面分析的合成萎缩
Front Neuroimaging. 2022 Jun 2;1:861687. doi: 10.3389/fnimg.2022.861687. eCollection 2022.
8
Machine learning in a graph framework for subcortical segmentation.用于皮质下分割的图框架中的机器学习
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10133. doi: 10.1117/12.2254874. Epub 2017 Feb 24.

本文引用的文献

4
RATS: Rapid Automatic Tissue Segmentation in rodent brain MRI.RATS:啮齿动物脑 MRI 的快速自动组织分割。
J Neurosci Methods. 2014 Jan 15;221:175-82. doi: 10.1016/j.jneumeth.2013.09.021. Epub 2013 Oct 18.
5
Graph-based IVUS segmentation with efficient computer-aided refinement.基于图的血管内超声分割与高效计算机辅助细化。
IEEE Trans Med Imaging. 2013 Aug;32(8):1536-49. doi: 10.1109/TMI.2013.2260763. Epub 2013 Apr 30.
8
Optimal multiple surface segmentation with shape and context priors.基于形状和上下文先验的最优多表面分割。
IEEE Trans Med Imaging. 2013 Feb;32(2):376-86. doi: 10.1109/TMI.2012.2227120. Epub 2012 Nov 15.
10
Cortical Surface Reconstruction from High-Resolution MR Brain Images.从高分辨率磁共振脑图像重建皮质表面
Int J Biomed Imaging. 2012;2012:870196. doi: 10.1155/2012/870196. Epub 2012 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验