Suppr超能文献

基于骨的统计形状建模对无症状和骨关节炎膝关节软骨进行解剖对应区域分析。

Anatomically corresponded regional analysis of cartilage in asymptomatic and osteoarthritic knees by statistical shape modelling of the bone.

机构信息

Imaging Science and Biomedical Engineering, School of Cancer and Enabling Sciences, The University of Manchester, M13 9PT Manchester, UK.

出版信息

IEEE Trans Med Imaging. 2010 Aug;29(8):1541-59. doi: 10.1109/TMI.2010.2047653. Epub 2010 Apr 8.

Abstract

Magnetic resonance imaging (MRI) is emerging as the method of choice for measuring cartilage loss in osteoarthritis (OA), but current methods of analysis are imperfect for therapeutic clinical trials. In this paper, we present and evaluate, in two multicenter multivendor studies, a new method for anatomically corresponded regional analysis of cartilage (ACRAC) that allows analysis of knee cartilage morphology in anatomically corresponding focal regions defined on the bone surface. In our first study, 3-D knee MR Images were obtained from 19 asymptomatic female volunteers, followed by segmentations of the bone and cartilage. Minimum description length (MDL) statistical shape models (SSMs) were constructed from the segmented bone surfaces, providing mean bone shapes and a dense set of anatomically corresponding positions on each individual bone, the accuracy of which were measured using repeat images from a subset of the volunteers. Cartilage thicknesses were measured at these locations along 3-D normals to the bone surfaces, yielding corresponded cartilage thickness maps. Functional subregions of the joint were defined on the mean bone shapes, and propagated, using the correspondences, to each individual. ACRAC improved reproducibility, particularly in the central, load bearing subregions of the joint, compared with measures of volume obtained directly from the segmented cartilage surfaces. In our second study, MR Images were obtained from 31 female patient-volunteers with knee OA at baseline and six months. We obtained manual segmentations of the cartilage, and automatic segmentations of the bone using active appearance models (AAMs) built from the bone SSMs of the first study. ACRAC enabled the detection of significant thickness loss in the central, load-bearing regions of the whole femur (-5.57% p = 0.01, annualized) and the medial condyle (-13.08% , p = 0.024 Bonferroni corrected, annualized). We conclude that statistical shape modelling of bone surfaces defines correspondences invariant to individual joint size or shape, providing focal measures of cartilage with improved reproducibility compared to whole compartment measures. It permits the identification of anatomically equivalent regions, and provides the ability to identify the main load-bearing regions of the joint, based on the imputed premorbid state. The method permitted detection of tiny morphological change in cartilage thickness over six months in a small study, and may be useful for OA disease analysis and treatment monitoring.

摘要

磁共振成像(MRI)正成为测量骨关节炎(OA)中软骨损失的首选方法,但目前的分析方法对于治疗性临床试验并不完美。在本文中,我们在两项多中心多供应商研究中提出并评估了一种新的解剖对应区域分析软骨(ACRAC)方法,该方法允许在解剖上对应于定义在骨表面上的焦点区域分析膝关节软骨形态。在我们的第一项研究中,从 19 名无症状的女性志愿者中获得了 3-D 膝关节 MRI 图像,然后对骨骼和软骨进行分割。从分割的骨骼表面构建了最小描述长度(MDL)统计形状模型(SSM),提供了平均骨骼形状和每个个体骨骼上密集的一组解剖对应位置,其准确性使用志愿者子集的重复图像进行测量。在这些位置沿 3-D 法线测量软骨厚度,得出对应软骨厚度图。在平均骨骼形状上定义了关节的功能亚区,并通过对应关系传播到每个个体。与直接从分割的软骨表面获得的体积测量值相比,ACRAC 提高了可重复性,尤其是在关节的中央承重亚区。在我们的第二项研究中,在基线和六个月时从 31 名女性患者志愿者中获得了膝关节 OA 的 MRI 图像。我们获得了软骨的手动分割,以及使用第一项研究中骨骼 SSM 构建的主动外观模型(AAM)的骨骼自动分割。ACRAC 能够检测到整个股骨的中央承重区域(-5.57%,p = 0.01,年化)和内侧髁(-13.08%,p = 0.024 Bonferroni 校正,年化)的厚度显著损失。我们得出结论,骨骼表面的统计形状建模定义了与个体关节大小或形状不变的对应关系,与整体关节测量相比,提供了具有更好可重复性的软骨焦点测量。它允许识别解剖等效区域,并根据推断的未患病状态提供识别关节主要承重区域的能力。该方法在一项小型研究中在六个月内检测到软骨厚度的微小形态变化,对于 OA 疾病分析和治疗监测可能很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验