Suppr超能文献

遗传连锁与自然选择。

Genetic linkage and natural selection.

机构信息

Institute of Science and Technology, Am Campus 1, A-3400 Klosterneuburg, Austria.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2559-69. doi: 10.1098/rstb.2010.0106.

Abstract

The prevalence of recombination in eukaryotes poses one of the most puzzling questions in biology. The most compelling general explanation is that recombination facilitates selection by breaking down the negative associations generated by random drift (i.e. Hill-Robertson interference, HRI). I classify the effects of HRI owing to: deleterious mutation, balancing selection and selective sweeps on: neutral diversity, rates of adaptation and the mutation load. These effects are mediated primarily by the density of deleterious mutations and of selective sweeps. Sequence polymorphism and divergence suggest that these rates may be high enough to cause significant interference even in genomic regions of high recombination. However, neither seems able to generate enough variance in fitness to select strongly for high rates of recombination. It is plausible that spatial and temporal fluctuations in selection generate much more fitness variance, and hence selection for recombination, than can be explained by uniformly deleterious mutations or species-wide selective sweeps.

摘要

真核生物中重组的普遍性是生物学中最令人费解的问题之一。最有说服力的一般解释是,重组通过打破由随机漂变产生的负关联(即 Hill-Robertson 干扰,HRI)促进了选择。我将 HRI 的影响归因于:有害突变、平衡选择和选择清扫对:中性多样性、适应率和突变负荷的影响。这些影响主要由有害突变和选择清扫的密度介导。序列多态性和分歧表明,即使在高重组基因组区域,这些速率也可能高到足以引起显著的干扰。然而,似乎没有一种方法能够产生足够的适应性变化来强烈选择高重组率。合理的是,选择的空间和时间波动产生的适应性变化比由均匀有害突变或全物种选择清扫所能解释的要多得多,因此也更有利于选择重组。

相似文献

1
Genetic linkage and natural selection.
Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2559-69. doi: 10.1098/rstb.2010.0106.
3
Mutation and the evolution of recombination.
Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1281-94. doi: 10.1098/rstb.2009.0320.
4
Adaptive Evolution Is Substantially Impeded by Hill-Robertson Interference in Drosophila.
Mol Biol Evol. 2016 Feb;33(2):442-55. doi: 10.1093/molbev/msv236. Epub 2015 Oct 22.
5
Recombination accelerates adaptation on a large-scale empirical fitness landscape in HIV-1.
PLoS Genet. 2014 Jun 26;10(6):e1004439. doi: 10.1371/journal.pgen.1004439. eCollection 2014 Jun.
7
Limits to the rate of adaptive substitution in sexual populations.
PLoS Genet. 2012;8(6):e1002740. doi: 10.1371/journal.pgen.1002740. Epub 2012 Jun 7.
8
Rapid adaptation of recombining populations on tunable fitness landscapes.
Mol Ecol. 2024 May;33(10):e16900. doi: 10.1111/mec.16900. Epub 2023 Mar 20.
9
Recombination enhances protein adaptation in Drosophila melanogaster.
Curr Biol. 2005 Sep 20;15(18):1651-6. doi: 10.1016/j.cub.2005.07.065.
10
Epistasis between deleterious mutations and the evolution of recombination.
Trends Ecol Evol. 2007 Jun;22(6):308-15. doi: 10.1016/j.tree.2007.02.014. Epub 2007 Mar 6.

引用本文的文献

2
Hiding in plain sight: Genome-wide recombination and a dynamic accessory genome drive diversity in f.sp. .
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2220570120. doi: 10.1073/pnas.2220570120. Epub 2023 Jun 26.
3
Complex fitness landscape shapes variation in a hyperpolymorphic species.
Elife. 2022 May 9;11:e76073. doi: 10.7554/eLife.76073.
5
Seasonal changes in recombination characteristics in a natural population of Drosophila melanogaster.
Heredity (Edinb). 2021 Sep;127(3):278-287. doi: 10.1038/s41437-021-00449-2. Epub 2021 Jun 23.
6
Drivers of linkage disequilibrium across a species' geographic range.
PLoS Genet. 2021 Mar 26;17(3):e1009477. doi: 10.1371/journal.pgen.1009477. eCollection 2021 Mar.
7
How Much Does Vary Among Species?
Genetics. 2020 Oct;216(2):559-572. doi: 10.1534/genetics.120.303622. Epub 2020 Aug 24.
8
Leaf anatomy is not correlated to CAM function in a C3+CAM hybrid species, Yucca gloriosa.
Ann Bot. 2021 Mar 24;127(4):437-449. doi: 10.1093/aob/mcaa036.
9
The determinants of genetic diversity in butterflies.
Nat Commun. 2019 Aug 1;10(1):3466. doi: 10.1038/s41467-019-11308-4.
10
The Effects on Neutral Variability of Recurrent Selective Sweeps and Background Selection.
Genetics. 2019 May;212(1):287-303. doi: 10.1534/genetics.119.301951. Epub 2019 Mar 28.

本文引用的文献

1
Evidence that adaptation in Drosophila is not limited by mutation at single sites.
PLoS Genet. 2010 Jun 17;6(6):e1000924. doi: 10.1371/journal.pgen.1000924.
2
The role of advantageous mutations in enhancing the evolution of a recombination modifier.
Genetics. 2010 Apr;184(4):1153-64. doi: 10.1534/genetics.109.112920. Epub 2010 Feb 5.
3
Why sex and recombination?
Cold Spring Harb Symp Quant Biol. 2009;74:187-95. doi: 10.1101/sqb.2009.74.030. Epub 2009 Nov 10.
4
Genetic recombination and molecular evolution.
Cold Spring Harb Symp Quant Biol. 2009;74:177-86. doi: 10.1101/sqb.2009.74.015. Epub 2009 Sep 4.
5
Estimating selection intensity on synonymous codon usage in a nonequilibrium population.
Genetics. 2009 Oct;183(2):651-62, 1SI-23SI. doi: 10.1534/genetics.109.101782. Epub 2009 Jul 20.
6
7
Estimation of fine-scale recombination intensity variation in the white-echinus interval of D. melanogaster.
J Mol Evol. 2009 Jul;69(1):42-53. doi: 10.1007/s00239-009-9250-5. Epub 2009 Jun 6.
8
Pervasive natural selection in the Drosophila genome?
PLoS Genet. 2009 Jun;5(6):e1000495. doi: 10.1371/journal.pgen.1000495. Epub 2009 Jun 5.
9
On the causes of selection for recombination underlying the red queen hypothesis.
Am Nat. 2009 Jul;174 Suppl 1(Suppl 1):S31-42. doi: 10.1086/599085.
10
A mixability theory for the role of sex in evolution.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19803-8. doi: 10.1073/pnas.0803596105. Epub 2008 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验