Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13713-7. doi: 10.1073/pnas.1005415107. Epub 2010 Jul 19.
A crucial parameter in many theories of protein folding is the rate of diffusion over the energy landscape. Using a microfluidic mixer we have observed the rate of intramolecular diffusion within the unfolded B1 domain of protein L before it folds. The diffusion-limited rate of intramolecular contact is about 20 times slower than the rate in 6 M GdnHCl, and because in these conditions the protein is also more compact, the intramolecular diffusion coefficient decreases 100-500 times. The dramatic slowdown in diffusion occurs within the 250 micros mixing time of the mixer, and there appears to be no further evolution of this rate before reaching the transition state of folding. We show that observed folding rates are well predicted by a Kramers model with a denaturant-dependent diffusion coefficient and speculate that this diffusion coefficient is a significant contribution to the observed rate of folding.
在许多蛋白质折叠理论中,一个关键参数是在能量景观上扩散的速率。我们使用微流控混合器观察了蛋白质 L 的 B1 结构域在折叠之前的无规卷曲状态下的分子内扩散速率。分子内接触的扩散限制速率比在 6 M GdnHCl 中的速率慢约 20 倍,而且由于在这些条件下蛋白质也更加紧凑,因此分子内扩散系数降低了 100-500 倍。在混合器的 250 微秒混合时间内,扩散速度急剧下降,并且在达到折叠的过渡状态之前,似乎没有进一步的速率演变。我们表明,观察到的折叠速率可以很好地由带有变性剂依赖性扩散系数的 Kramer 模型预测,并推测该扩散系数是观察到的折叠速率的重要贡献因素。