Suppr超能文献

蛋白质折叠状态是动力学枢纽。

Protein folded states are kinetic hubs.

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10890-5. doi: 10.1073/pnas.1003962107. Epub 2010 Jun 1.

Abstract

Understanding molecular kinetics, and particularly protein folding, is a classic grand challenge in molecular biophysics. Network models, such as Markov state models (MSMs), are one potential solution to this problem. MSMs have recently yielded quantitative agreement with experimentally derived structures and folding rates for specific systems, leaving them positioned to potentially provide a deeper understanding of molecular kinetics that can lead to experimentally testable hypotheses. Here we use existing MSMs for the villin headpiece and NTL9, which were constructed from atomistic simulations, to accomplish this goal. In addition, we provide simpler, humanly comprehensible networks that capture the essence of molecular kinetics and reproduce qualitative phenomena like the apparent two-state folding often seen in experiments. Together, these models show that protein dynamics are dominated by stochastic jumps between numerous metastable states and that proteins have heterogeneous unfolded states (many unfolded basins that interconvert more rapidly with the native state than with one another) yet often still appear two-state. Most importantly, we find that protein native states are hubs that can be reached quickly from any other state. However, metastability and a web of nonnative states slow the average folding rate. Experimental tests for these findings and their implications for other fields, like protein design, are also discussed.

摘要

理解分子动力学,特别是蛋白质折叠,是分子生物物理学中的一个经典的重大挑战。网络模型,如马尔可夫状态模型 (MSM),是解决这个问题的一种潜在方法。MSM 最近已经与特定系统的实验得出的结构和折叠速率取得了定量一致,使它们有可能提供对分子动力学的更深入理解,从而产生可通过实验检验的假设。在这里,我们使用现有的源自原子模拟的 villin 头部和 NTL9 的 MSM 来实现这一目标。此外,我们还提供了更简单、易于理解的网络,这些网络捕捉了分子动力学的本质,并再现了实验中常见的定性现象,如明显的两态折叠。这些模型共同表明,蛋白质动力学主要由大量亚稳态之间的随机跳跃所主导,并且蛋白质具有异构的未折叠状态(许多未折叠的盆地与天然状态之间的相互转换比彼此之间更快),但仍经常呈现两态。最重要的是,我们发现蛋白质天然状态是可以从任何其他状态快速到达的枢纽。然而,亚稳性和非天然状态的网络会降低平均折叠速率。还讨论了这些发现及其对其他领域(如蛋白质设计)的影响的实验检验。

相似文献

1
Protein folded states are kinetic hubs.蛋白质折叠状态是动力学枢纽。
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10890-5. doi: 10.1073/pnas.1003962107. Epub 2010 Jun 1.
5
Simple few-state models reveal hidden complexity in protein folding.简单的少体模型揭示了蛋白质折叠中的隐藏复杂性。
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17807-13. doi: 10.1073/pnas.1201810109. Epub 2012 Jul 9.

引用本文的文献

5
A Stochastic Landscape Approach for Protein Folding State Classification.基于随机景观模型的蛋白质折叠态分类方法。
J Chem Theory Comput. 2024 Jul 9;20(13):5428-5438. doi: 10.1021/acs.jctc.4c00464. Epub 2024 Jun 26.
6
Hierarchical consciousness: the Nested Observer Windows model.层次意识:嵌套观察者窗口模型。
Neurosci Conscious. 2024 Mar 18;2024(1):niae010. doi: 10.1093/nc/niae010. eCollection 2024.

本文引用的文献

5
Rapid equilibrium sampling initiated from nonequilibrium data.从非平衡数据开始的快速平衡采样。
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19765-9. doi: 10.1073/pnas.0909088106. Epub 2009 Sep 29.
10
Ruggedness in the folding landscape of protein L.蛋白质L折叠构象中的稳定性
HFSP J. 2008 Dec;2(6):388-95. doi: 10.2976/1.3013702. Epub 2008 Nov 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验