Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany.
Elife. 2020 Oct 27;9:e60895. doi: 10.7554/eLife.60895.
Nascent polypeptides begin to fold in the constrained space of the ribosomal peptide exit tunnel. Here we use force-profile analysis (FPA) and photo-induced energy-transfer fluorescence correlation spectroscopy (PET-FCS) to show how a small α-helical domain, the N-terminal domain of HemK, folds cotranslationally. Compaction starts vectorially as soon as the first α-helical segments are synthesized. As nascent chain grows, emerging helical segments dock onto each other and continue to rearrange at the vicinity of the ribosome. Inside or in the proximity of the ribosome, the nascent peptide undergoes structural fluctuations on the µs time scale. The fluctuations slow down as the domain moves away from the ribosome. Mutations that destabilize the packing of the domain's hydrophobic core have little effect on folding within the exit tunnel, but abolish the final domain stabilization. The results show the power of FPA and PET-FCS in solving the trajectory of cotranslational protein folding and in characterizing the dynamic properties of folding intermediates.
新生多肽开始在核糖体肽出口隧道的受限空间中折叠。在这里,我们使用力谱分析(FPA)和光诱导能量转移荧光相关光谱(PET-FCS)来显示 HemK 的 N 端结构域这样一个小的α-螺旋结构域如何共翻译折叠。一旦合成了第一个α-螺旋片段,就会从向量上开始紧凑化。随着新生链的生长,新出现的螺旋片段相互对接,并在核糖体附近继续重新排列。在核糖体内部或附近,新生肽在µs 时间尺度上经历结构波动。当结构域远离核糖体时,波动会减慢。使结构域疏水性核心包装不稳定的突变对出口隧道内的折叠几乎没有影响,但会阻止结构域的最终稳定。结果表明,FPA 和 PET-FCS 在解决共翻译蛋白折叠轨迹和表征折叠中间体的动态特性方面具有强大的作用。