Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan, USA.
Int J Radiat Oncol Biol Phys. 2011 Jun 1;80(2):453-61. doi: 10.1016/j.ijrobp.2010.02.033. Epub 2010 Jun 18.
To quantify the dosimetric effect and margins required to account for prostate intrafractional translation and residual setup error in a cone beam computed tomography (CBCT)-guided hypofractionated radiotherapy protocol.
Prostate position after online correction was measured during dose delivery using simultaneous kV fluoroscopy and posttreatment CBCT in 572 fractions to 30 patients. We reconstructed the dose distribution to the clinical tumor volume (CTV) using a convolution of the static dose with a probability density function (PDF) based on the kV fluoroscopy, and we calculated the minimum dose received by 99% of the CTV (D(99)). We compared reconstructed doses when the convolution was performed per beam, per patient, and when the PDF was created using posttreatment CBCT. We determined the minimum axis-specific margins to limit CTV D(99) reduction to 1%.
For 3-mm margins, D(99) reduction was ≤5% for 29/30 patients. Using post-CBCT rather than localizations at treatment delivery exaggerated dosimetric effects by ~47%, while there was no such bias between the dose convolved with a beam-specific and patient-specific PDF. After eight fractions, final cumulative D(99) could be predicted with a root mean square error of <1%. For 90% of patients, the required margins were ≤2, 4, and 3 mm, with 70%, 40%, and 33% of patients requiring no right-left (RL), anteroposterior (AP), and superoinferior margins, respectively.
For protocols with CBCT guidance, RL, AP, and SI margins of 2, 4, and 3 mm are sufficient to account for translational errors; however, the large variation in patient-specific margins suggests that adaptive management may be beneficial.
在锥形束 CT(CBCT)引导的适形分割放射治疗方案中,量化前列腺分次内平移和残余摆位误差所需的剂量学效应和边界。
对 30 例患者的 572 个分次进行在线校正期间的在线剂量输送过程中的前列腺位置使用千伏荧光透视术和治疗后 CBCT 进行测量。我们使用静态剂量与基于千伏荧光透视术的概率密度函数(PDF)的卷积来重建临床肿瘤体积(CTV)的剂量分布,并且我们计算了 99%CTV 接受的最小剂量(D(99))。我们比较了在每次射束、每位患者进行卷积以及使用治疗后 CBCT 创建 PDF 时的重建剂量。我们确定了最小的轴特异性边界,以将 CTV D(99)减少限制在 1%以内。
对于 3mm 的边界,29/30 例患者的 D(99)减少小于 5%。使用治疗时的 CBCT 而不是局部定位会夸大剂量学效应约 47%,而在具有束特异性和患者特异性 PDF 的剂量卷积之间没有这种偏差。在 8 个分次后,最终累积 D(99)可以以 <1%的均方根误差进行预测。对于 90%的患者,所需的边界小于等于 2、4 和 3mm,分别有 70%、40%和 33%的患者不需要左右(RL)、前后(AP)和上下(SI)边界。
对于具有 CBCT 引导的方案,RL、AP 和 SI 的 2、4 和 3mm 边界足以应对平移误差;然而,患者特异性边界的大变化表明自适应管理可能是有益的。