Stanford University, Department of Radiation Oncology, Stanford, USA.
Radiother Oncol. 2019 Nov;140:167-174. doi: 10.1016/j.radonc.2019.06.027. Epub 2019 Jul 11.
To investigate a novel markerless prostate localization strategy using a pre-trained deep learning model to interpret routine projection kilovoltage (kV) X-ray images in image-guided radiation therapy (IGRT).
We developed a personalized region-based convolutional neural network to localize the prostate treatment target without implanted fiducials. To train the deep neural network (DNN), we used the patient's planning computed tomography (pCT) images with pre-delineated prostate target to generate a large amount of synthetic kV projection X-ray images in the geometry of onboard imager (OBI) system. The DNN model was evaluated by retrospectively studying 10 patients who underwent prostate IGRT. Three out of the ten patients who had implanted fiducials and the fiducials' positions in the OBI images acquired for treatment setup were examined to show the potential of the proposed method for prostate IGRT. Statistical analysis using Lin's concordance correlation coefficient was calculated to assess the results along with the difference between the digitally reconstructed radiographs (DRR) derived and DNN predicted locations of the prostate.
Differences between the predicted target positions using DNN and their actual positions are (mean ± standard deviation) 1.58 ± 0.43 mm, 1.64 ± 0.43 mm, and 1.67 ± 0.36 mm in anterior-posterior, lateral, and oblique directions, respectively. Prostate position identified on the OBI kV images is also found to be consistent with that derived from the implanted fiducials.
Highly accurate, markerless prostate localization based on deep learning is achievable. The proposed method is useful for daily patient positioning and real-time target tracking during prostate radiotherapy.
本研究旨在探索一种新的无标记前列腺定位策略,即利用预先训练好的深度学习模型来解读图像引导放射治疗(IGRT)中的常规投影千伏(kV)X 射线图像。
我们开发了一种基于区域的个性化卷积神经网络,以在无植入标志物的情况下定位前列腺治疗靶区。为了训练深度神经网络(DNN),我们使用了患者的计划计算机断层扫描(pCT)图像,并对其进行了预分割,以生成大量与机载成像仪(OBI)系统几何形状一致的合成 kV 投影 X 射线图像。通过回顾性研究 10 例接受前列腺 IGRT 的患者,对 DNN 模型进行了评估。其中 3 例患者植入了标志物,并对治疗摆位时在 OBI 图像中获得的标志物位置进行了检查,以展示该方法在前列腺 IGRT 中的应用潜力。使用林氏一致性相关系数进行统计分析,以评估该方法的结果以及由数字重建放射图(DRR)和 DNN 预测的前列腺位置之间的差异。
使用 DNN 预测的目标位置与实际位置之间的差异在前后(AP)、左右(LR)和斜向(Ob)方向上分别为 1.58 ± 0.43 mm、1.64 ± 0.43 mm 和 1.67 ± 0.36 mm。在 OBI kV 图像上识别的前列腺位置也与植入的标志物一致。
基于深度学习的高度准确、无标记的前列腺定位是可行的。该方法可用于前列腺放射治疗中的日常患者定位和实时靶区跟踪。