Suppr超能文献

评估多种基于图像的模式在前列腺癌图像引导放射治疗(IGRT)中的应用:一项前瞻性研究。

Evaluation of multiple image-based modalities for image-guided radiation therapy (IGRT) of prostate carcinoma: a prospective study.

机构信息

Department of Radiation Oncology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA.

出版信息

Med Phys. 2013 Apr;40(4):041707. doi: 10.1118/1.4794502.

Abstract

PURPOSE

Setup errors and prostate intrafraction motion are main sources of localization uncertainty in prostate cancer radiation therapy. This study evaluates four different imaging modalities 3D ultrasound (US), kV planar images, cone-beam computed tomography (CBCT), and implanted electromagnetic transponders (Calypso/Varian) to assess inter- and intrafraction localization errors during intensity-modulated radiation therapy based treatment of prostate cancer.

METHODS

Twenty-seven prostate cancer patients were enrolled in a prospective IRB-approved study and treated to a total dose of 75.6 Gy (1.8 Gy/fraction). Overall, 1100 fractions were evaluated. For each fraction, treatment targets were localized using US, kV planar images, and CBCT in a sequence defined to determine setup offsets relative to the patient skin tattoos, intermodality differences, and residual errors for each patient and patient cohort. Planning margins, following van Herk's formalism, were estimated based on error distributions. Calypso-based localization was not available for the first eight patients, therefore centroid positions of implanted gold-seed markers imaged prior to and immediately following treatment were used as a motion surrogate during treatment. For the remaining 19 patients, Calypso transponders were used to assess prostate intrafraction motion.

RESULTS

The means (μ), and standard deviations (SD) of the systematic (Σ) and random errors (σ) of interfraction prostate shifts (relative to initial skin tattoo positioning), as evaluated using CBCT, kV, and US, averaged over all patients and fractions, were: [μ CBCT = (-1.2, 0.2, 1.1) mm, Σ CBCT = (3.0, 1.4, 2.4) mm, σ CBCT = (3.2, 2.2, 2.5) mm], [μkV = (-2.9, -0.4, 0.5) mm, Σ kV = (3.4, 3.1, 2.6) mm, σ kV = (2.9, 2.0, 2.4) mm], and [μ US = (-3.6, -1.4, 0.0) mm, Σ US = (3.3, 3.5, 2.8) mm, σ US = (4.1, 3.8, 3.6) mm], in the anterior-posterior (A/P), superior-inferior (S/I), and the left-right (L/R) directions, respectively. In the treatment protocol, adjustment of couch was guided by US images. Residual setup errors as assessed by kV images were found to be: μ residual = (-0.4, 0.2, 0.2) mm, Σ residual = (1.0, 1.0,0.7) mm, and σ residual = (2.5, 2.3, 1.8) mm. Intrafraction prostate motion, evaluated using electromagnetic transponders, was: μ intrafxn = (0.0, 0.0, 0.0) mm, Σ intrafxn = (1.3, 1.5, 0.6) mm, and σ intrafxn = (2.6, 2.4, 1.4) mm. Shifts between pre- and post-treatment kV images were: μ kV(post-pre) = (-0.3, 0.8, -0.2), Σ kV(post-pre) = (2.4, 2.7, 2.1) mm, and σ kV(post-pre) = (2.7, 3.2, 3.1) mm. Relative to skin tattoos, planning margins for setup error were within 10-11 mm for all image-based modalities. The use of image guidance was shown to reduce these margins to less than 5 mm. Margins to compensate for both residual setup (interfraction) errors as well as intrafraction motion were 6.6, 6.8, and 3.9 mm in the A/P, S/I, and L/R directions, respectively.

CONCLUSIONS

Analysis of interfraction setup errors, performed with US, CBCT, planar kV images, and electromagnetic transponders, from a large dataset revealed intermodality shifts were comparable (within 3-4 mm). Interfraction planning margins, relative to setup based on skin marks, were generally within the 10 mm prostate-to-planning target volume margin used in our clinic. With image guidance, interfraction residual planning margins were reduced to approximately less than 4 mm. These findings are potentially important for dose escalation studies using smaller margins to better protect normal tissues.

摘要

目的

在前列腺癌放射治疗中,定位误差和前列腺内分次运动是导致定位不确定性的主要原因。本研究评估了 3 种不同的成像方式(三维超声(US)、千伏平面图像、锥形束 CT(CBCT))和植入式电磁传感器(Calypso/Varian),以评估前列腺癌调强放疗治疗过程中的分次内和分次间定位误差。

方法

27 例前列腺癌患者入组本前瞻性 IRB 批准的研究,接受总剂量 75.6 Gy(1.8 Gy/分次)。共评估了 1100 个分次。对于每个分次,使用 US、kV 平面图像和 CBCT 按序列定位治疗靶区,以确定相对于患者皮肤标记的设置偏移量、各模态之间的差异以及每个患者和患者队列的残余误差。根据误差分布,采用 van Herk 形式主义估算计划裕度。前 8 例患者没有使用基于 Calypso 的定位,因此在治疗前后使用植入的金种子标记的质心位置作为治疗期间的运动替代物。对于其余 19 例患者,使用 Calypso 传感器评估前列腺内分次运动。

结果

使用 CBCT、kV 和 US 评估所有患者和分次的前列腺移位的系统(Σ)和随机(σ)误差的平均值(μ)和标准差(SD),相对于初始皮肤标记定位,结果如下:[μ CBCT =(-1.2,0.2,1.1)mm,Σ CBCT =(3.0,1.4,2.4)mm,σ CBCT =(3.2,2.2,2.5)mm],[μ kV =(-2.9,-0.4,0.5)mm,Σ kV =(3.4,3.1,2.6)mm,σ kV =(2.9,2.0,2.4)mm],和[μ US =(-3.6,-1.4,0.0)mm,Σ US =(3.3,3.5,2.8)mm,σ US =(4.1,3.8,3.6)mm],在前-后(A/P)、上-下(S/I)和左-右(L/R)方向上。在治疗方案中,调整治疗床由 US 图像指导。通过 kV 图像评估的残余设置误差为:μ residual =(-0.4,0.2,0.2)mm,Σ residual =(1.0,1.0,0.7)mm,和σ residual =(2.5,2.3,1.8)mm。使用电磁传感器评估的前列腺内分次运动为:μ intrafxn =(0.0,0.0,0.0)mm,Σ intrafxn =(1.3,1.5,0.6)mm,和σ intrafxn =(2.6,2.4,1.4)mm。kV 前后图像之间的移位为:μ kV(post-pre) =(-0.3,0.8,-0.2)mm,Σ kV(post-pre) =(2.4,2.7,2.1)mm,和σ kV(post-pre) =(2.7,3.2,3.1)mm。相对于皮肤标记,所有基于图像的方式的设置误差的计划裕度均在 10-11 mm 以内。图像引导的使用表明,这些裕度减少到小于 5 mm。为了补偿残余设置(分次间)误差和前列腺内分次运动,在 A/P、S/I 和 L/R 方向上的余量分别为 6.6、6.8 和 3.9 mm。

结论

对来自大样本数据集的 US、CBCT、千伏平面图像和电磁传感器的分次间设置误差进行分析,发现各模态之间的位移差异在 3-4 mm 以内。相对于基于皮肤标记的设置,相对于计划靶区的前列腺计划边缘通常在我们诊所使用的 10 mm 前列腺-计划靶区边缘内。使用图像引导,分次间残余计划裕度减少至约小于 4 mm。这些发现对于使用较小的边缘进行剂量递增研究以更好地保护正常组织可能非常重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验