Suppr超能文献

胰高血糖素受体 N 端结构域的突变和半胱氨酸扫描分析。

Mutational and cysteine scanning analysis of the glucagon receptor N-terminal domain.

机构信息

Laboratoire de Chimie Biologique et de la Nutrition, Université Libre de Bruxelles, 1070 Brussels, Belgium.

出版信息

J Biol Chem. 2010 Oct 1;285(40):30951-8. doi: 10.1074/jbc.M110.102814. Epub 2010 Jul 20.

Abstract

The glucagon receptor belongs to the B family of G-protein coupled receptors. Little structural information is available about this receptor and its association with glucagon. We used the substituted cysteine accessibility method and three-dimensional molecular modeling based on the gastrointestinal insulinotropic peptide and glucagon-like peptide 1 receptor structures to study the N-terminal domain of this receptor, a central element for ligand binding and specificity. Our results showed that Asp(63), Arg(116), and Lys(98) are essential for the receptor structure and/or ligand binding because mutations of these three residues completely disrupted or markedly impaired the receptor function. In agreement with these data, our models revealed that Asp(63) and Arg(116) form a salt bridge, whereas Lys(98) is engaged in cation-π interactions with the conserved tryptophans 68 and 106. The native receptor could not be labeled by hydrophilic cysteine biotinylation reagents, but treatment of intact cells with [2-(trimethylammonium)ethyl]methanethiosulfonate increased the glucagon binding site density. This result suggested that an unidentified protein with at least one free cysteine associated with the receptor prevented glucagon recognition and that [2-(trimethylammonium)ethyl]methanethiosulfonate treatment relieved this inhibition. The substituted cysteine accessibility method was also performed on 15 residues selected using the three-dimensional models. Several receptor mutants, despite a relatively high predicted cysteine accessibility, could not be labeled by specific reagents. The three-dimensional models show that these mutated residues are located on one face of the protein. This could be part of the interface between the receptor and the unidentified inhibitory protein, making these residues inaccessible to biotinylation compounds.

摘要

胰高血糖素受体属于 B 族 G 蛋白偶联受体。关于该受体及其与胰高血糖素的关联,目前仅有少量结构信息。我们采用取代半胱氨酸可及性方法和基于胃肠胰岛素促分泌肽和胰高血糖素样肽 1 受体结构的三维分子建模来研究该受体的 N 端结构域,该结构域是配体结合和特异性的核心元件。研究结果表明,Asp(63)、Arg(116)和 Lys(98)对受体结构和/或配体结合至关重要,因为这三个残基的突变完全破坏或显著削弱了受体功能。与这些数据一致,我们的模型表明 Asp(63)和 Arg(116)形成盐桥,而 Lys(98)与保守的色氨酸 68 和 106 形成阳离子-π 相互作用。天然受体不能被亲水性半胱氨酸生物素化试剂标记,但用[2-(三甲基铵)乙基]甲硫磺酸酯处理完整细胞可增加胰高血糖素结合位点密度。这一结果表明,与受体结合的一种未知蛋白至少带有一个游离半胱氨酸,阻止了胰高血糖素的识别,而[2-(三甲基铵)乙基]甲硫磺酸酯处理解除了这种抑制。我们还使用三维模型选择了 15 个残基进行取代半胱氨酸可及性实验。尽管这些突变受体的预测半胱氨酸可及性相对较高,但仍不能被特异性试剂标记。三维模型显示这些突变残基位于蛋白的一个面上。这可能是受体和未知抑制蛋白之间的界面的一部分,使这些残基无法被生物素化化合物标记。

相似文献

1
Mutational and cysteine scanning analysis of the glucagon receptor N-terminal domain.
J Biol Chem. 2010 Oct 1;285(40):30951-8. doi: 10.1074/jbc.M110.102814. Epub 2010 Jul 20.
2
Analysis of the glucagon receptor first extracellular loop by the substituted cysteine accessibility method.
Peptides. 2011 Aug;32(8):1593-9. doi: 10.1016/j.peptides.2011.06.009. Epub 2011 Jun 15.
6
Roles of specific extracellular domains of the glucagon receptor in ligand binding and signaling.
Biochemistry. 2002 Oct 1;41(39):11795-803. doi: 10.1021/bi025711j.
9
Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway.
J Biol Chem. 2005 Sep 23;280(38):32649-54. doi: 10.1074/jbc.M506723200. Epub 2005 Jul 27.
10
Ligand binding pocket formed by evolutionarily conserved residues in the glucagon-like peptide-1 (GLP-1) receptor core domain.
J Biol Chem. 2015 Feb 27;290(9):5696-706. doi: 10.1074/jbc.M114.612606. Epub 2015 Jan 5.

引用本文的文献

1
Allosteric communication mechanism in the glucagon receptor.
J Biol Chem. 2025 Apr 23;301(6):108530. doi: 10.1016/j.jbc.2025.108530.
2
A combined activation mechanism for the glucagon receptor.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15414-15422. doi: 10.1073/pnas.1921851117. Epub 2020 Jun 22.
4
Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors.
Front Pharmacol. 2015 Nov 5;6:264. doi: 10.3389/fphar.2015.00264. eCollection 2015.
5
Conformational states of the full-length glucagon receptor.
Nat Commun. 2015 Jul 31;6:7859. doi: 10.1038/ncomms8859.
6
Insights into the structure of class B GPCRs.
Trends Pharmacol Sci. 2014 Jan;35(1):12-22. doi: 10.1016/j.tips.2013.11.001. Epub 2013 Dec 18.
7
Structure of the human glucagon class B G-protein-coupled receptor.
Nature. 2013 Jul 25;499(7459):444-9. doi: 10.1038/nature12393. Epub 2013 Jul 17.
8
Molecular basis for negative regulation of the glucagon receptor.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14393-8. doi: 10.1073/pnas.1206734109. Epub 2012 Aug 20.
10
The structure and function of the glucagon-like peptide-1 receptor and its ligands.
Br J Pharmacol. 2012 May;166(1):27-41. doi: 10.1111/j.1476-5381.2011.01687.x.

本文引用的文献

1
A G protein-coupled receptor at work: the rhodopsin model.
Trends Biochem Sci. 2009 Nov;34(11):540-52. doi: 10.1016/j.tibs.2009.07.005. Epub 2009 Oct 21.
2
Multiple switches in G protein-coupled receptor activation.
Trends Pharmacol Sci. 2009 Sep;30(9):494-502. doi: 10.1016/j.tips.2009.06.003. Epub 2009 Sep 3.
3
Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1.
J Biol Chem. 2008 Nov 21;283(47):32900-12. doi: 10.1074/jbc.M805749200. Epub 2008 Sep 17.
4
Crystal structure of the human receptor activity-modifying protein 1 extracellular domain.
Protein Sci. 2008 Nov;17(11):1907-14. doi: 10.1110/ps.036012.108. Epub 2008 Aug 25.
5
Comparative protein structure modeling using Modeller.
Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit-5.6. doi: 10.1002/0471250953.bi0506s15.
6
Molecular recognition of parathyroid hormone by its G protein-coupled receptor.
Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5034-9. doi: 10.1073/pnas.0801027105. Epub 2008 Mar 28.
7
Glucagon receptors.
Cell Mol Life Sci. 2008 Jun;65(12):1880-99. doi: 10.1007/s00018-008-7479-6.
8
Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain.
J Biol Chem. 2008 Apr 25;283(17):11340-7. doi: 10.1074/jbc.M708740200. Epub 2008 Feb 20.
10
Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor.
Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13942-7. doi: 10.1073/pnas.0706404104. Epub 2007 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验