Laboratoire de Chimie Biologique et de la Nutrition, Université Libre de Bruxelles, 1070 Brussels, Belgium.
J Biol Chem. 2010 Oct 1;285(40):30951-8. doi: 10.1074/jbc.M110.102814. Epub 2010 Jul 20.
The glucagon receptor belongs to the B family of G-protein coupled receptors. Little structural information is available about this receptor and its association with glucagon. We used the substituted cysteine accessibility method and three-dimensional molecular modeling based on the gastrointestinal insulinotropic peptide and glucagon-like peptide 1 receptor structures to study the N-terminal domain of this receptor, a central element for ligand binding and specificity. Our results showed that Asp(63), Arg(116), and Lys(98) are essential for the receptor structure and/or ligand binding because mutations of these three residues completely disrupted or markedly impaired the receptor function. In agreement with these data, our models revealed that Asp(63) and Arg(116) form a salt bridge, whereas Lys(98) is engaged in cation-π interactions with the conserved tryptophans 68 and 106. The native receptor could not be labeled by hydrophilic cysteine biotinylation reagents, but treatment of intact cells with [2-(trimethylammonium)ethyl]methanethiosulfonate increased the glucagon binding site density. This result suggested that an unidentified protein with at least one free cysteine associated with the receptor prevented glucagon recognition and that [2-(trimethylammonium)ethyl]methanethiosulfonate treatment relieved this inhibition. The substituted cysteine accessibility method was also performed on 15 residues selected using the three-dimensional models. Several receptor mutants, despite a relatively high predicted cysteine accessibility, could not be labeled by specific reagents. The three-dimensional models show that these mutated residues are located on one face of the protein. This could be part of the interface between the receptor and the unidentified inhibitory protein, making these residues inaccessible to biotinylation compounds.
胰高血糖素受体属于 B 族 G 蛋白偶联受体。关于该受体及其与胰高血糖素的关联,目前仅有少量结构信息。我们采用取代半胱氨酸可及性方法和基于胃肠胰岛素促分泌肽和胰高血糖素样肽 1 受体结构的三维分子建模来研究该受体的 N 端结构域,该结构域是配体结合和特异性的核心元件。研究结果表明,Asp(63)、Arg(116)和 Lys(98)对受体结构和/或配体结合至关重要,因为这三个残基的突变完全破坏或显著削弱了受体功能。与这些数据一致,我们的模型表明 Asp(63)和 Arg(116)形成盐桥,而 Lys(98)与保守的色氨酸 68 和 106 形成阳离子-π 相互作用。天然受体不能被亲水性半胱氨酸生物素化试剂标记,但用[2-(三甲基铵)乙基]甲硫磺酸酯处理完整细胞可增加胰高血糖素结合位点密度。这一结果表明,与受体结合的一种未知蛋白至少带有一个游离半胱氨酸,阻止了胰高血糖素的识别,而[2-(三甲基铵)乙基]甲硫磺酸酯处理解除了这种抑制。我们还使用三维模型选择了 15 个残基进行取代半胱氨酸可及性实验。尽管这些突变受体的预测半胱氨酸可及性相对较高,但仍不能被特异性试剂标记。三维模型显示这些突变残基位于蛋白的一个面上。这可能是受体和未知抑制蛋白之间的界面的一部分,使这些残基无法被生物素化化合物标记。