Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA.
J Chromatogr A. 2010 Aug 20;1217(34):5522-8. doi: 10.1016/j.chroma.2010.06.057. Epub 2010 Jun 30.
We use Brownian dynamics simulations to analyze the electrophoretic separation of lambda-DNA (48.5kbp) and T4-DNA (169kbp) in a hexagonal array of 1microm diameter posts with a 3microm center-to-center distance. The simulation method takes advantage of an efficient interpolation algorithm for the non-uniform electric field to reach an ensemble size (100 molecules) and simulation length scale (1mm) that produces meaningful results for the average electrophoretic mobility and effective diffusion (dispersion) coefficient of these macromolecules as they move through the array. While the simulated electrophoretic mobility for lambda-DNA is close to the experimental data, the simulation underestimates the magnitude of the corresponding dispersion coefficient. The simulations predict baseline resolution in a 15mm device after 7min using an electric field around 30V/cm, with the resolution increasing exponentially as the electric field further decreases. The mobility and dispersivity data point out two essential phenomena that have been overlooked in previous models of DNA electrophoresis in post arrays: the relaxation time between collisions and simultaneous collisions with multiple posts.
我们使用布朗动力学模拟来分析在具有 3μm 中心距的六边形阵列的 1μm 直径的柱子中 λ-DNA(48.5kbp)和 T4-DNA(169kbp)的电泳分离。模拟方法利用了一种高效的非均匀电场插值算法,以达到有意义的结果的集总大小(100 个分子)和模拟长度尺度(1mm),这些大分子在通过阵列时的平均电泳迁移率和有效扩散(弥散)系数。虽然 λ-DNA 的模拟电泳迁移率接近实验数据,但模拟低估了相应弥散系数的大小。模拟预测在 15mm 器件中使用约 30V/cm 的电场 7min 后可实现基线分辨率,分辨率随着电场进一步降低呈指数增长。迁移率和弥散性数据指出了以前的柱列 DNA 电泳模型中忽略的两个重要现象:碰撞之间的弛豫时间和与多个柱子的同时碰撞。