Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
Nat Chem. 2010 Aug;2(8):653-60. doi: 10.1038/nchem.699. Epub 2010 Jun 27.
Information storage and processing is carried out at the level of individual macromolecules in biological systems, but there is no reason, in principle, why synthetic copolymers should not be used for the same purpose. Previous work has suggested that monomer sequence information in chain-folding synthetic copolyimides can be recognized by tweezer-type molecules binding to adjacent triplet sequences, and we show here that different tweezer molecules can show different sequence selectivities. This work, based on (1)H NMR spectroscopy in solution and on single-crystal X-ray analysis of tweezer-oligomer complexes in the solid state, provides the first clear-cut demonstration of polyimide chain-folding and adjacent-tweezer binding. It also reveals a new and entirely unexpected mechanism for sequence recognition, which, by analogy with a related process in biomolecular information processing, may be termed 'frameshift-reading'. The ability of one particular tweezer molecule to detect, with exceptionally high sensitivity, long-range sequence information in chain-folding aromatic copolyimides is readily explained by this novel process.
信息存储和处理是在生物系统的单个大分子水平上进行的,但原则上没有理由认为合成共聚物不能用于同样的目的。以前的工作表明,链折叠合成共聚酰亚胺中的单体序列信息可以被结合相邻三联体序列的镊子型分子识别,我们在这里表明,不同的镊子分子可以表现出不同的序列选择性。这项基于溶液中的(1)H NMR 光谱和固体状态中镊子-低聚物复合物的单晶 X 射线分析的工作,首次清楚地证明了聚酰亚胺链折叠和相邻镊子结合。它还揭示了一种新的、完全出乎意料的序列识别机制,通过类比生物分子信息处理中的相关过程,这种机制可以被称为“移码阅读”。通过这种新的过程,很容易解释为什么一种特殊的镊子分子能够以极高的灵敏度检测链折叠芳香族共聚酰亚胺中的长程序列信息。