Suppr超能文献

提高非小细胞肺癌治疗中的适形放疗。

Improving radiation conformality in the treatment of non-small cell lung cancer.

机构信息

Division of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA.

出版信息

Semin Radiat Oncol. 2010 Jul;20(3):171-7. doi: 10.1016/j.semradonc.2010.01.005.

Abstract

One of the many challenges of lung cancer radiotherapy is conforming the radiation dose to the target due to tumor/organ motion and the need to spare surrounding critical structures. Evolving radiotherapy technologies, such as four-dimensional (4-D) image-based motion management, daily on-board imaging and adaptive radiotherapy, have enabled us to improve the therapeutic index of radiation therapy for lung cancer by permitting the design of personalized treatments that deliver adequate doses conforming to the target while sparing the surrounding critical normal tissues. Four-dimensional computed tomography (CT) image-based motion management provides an opportunity to individualize target motion margins and reduce the risk of a geographical target miss. Daily on-board imaging and adaptive radiotherapy reduce set-up and motion/anatomy uncertainties over the course of radiotherapy. These achievements in image guidance have permitted the implementation in lung cancer patients of highly conformal treatment delivery techniques that are exquisitely sensitive to organ motion and anatomic change such as intensity-modulated radiation therapy, stereotactic body radiation therapy, and proton therapy. More clinical studies are needed to further optimize conformal radiotherapy using individualized treatment adaptations based on changes in anatomy and tumor motion during the course of radiotherapy and using functional and biological imaging to selectively escalate doses to radioresistant subregions within the tumor.

摘要

肺癌放射治疗的众多挑战之一是由于肿瘤/器官运动以及需要保护周围关键结构,使放射剂量与靶区相吻合。不断发展的放射治疗技术,如四维(4-D)基于图像的运动管理、每日在线成像和自适应放射治疗,使我们能够通过设计个性化的治疗方案来提高肺癌放射治疗的治疗指数,这些方案能够提供足够的剂量以适应靶区,同时保护周围关键的正常组织。基于四维计算机断层扫描(CT)图像的运动管理为个体化靶区运动边界提供了机会,并降低了靶区位置不准确的风险。每日在线成像和自适应放射治疗减少了放射治疗过程中的摆位和运动/解剖不确定性。这些图像引导方面的成就使得在肺癌患者中实施了高度适形的治疗技术成为可能,这些技术对器官运动和解剖变化非常敏感,如强度调制放射治疗、立体定向体放射治疗和质子治疗。需要更多的临床研究来进一步优化基于放射治疗过程中解剖结构和肿瘤运动变化的个体化治疗适应性的适形放射治疗,以及使用功能和生物成像选择性地提高肿瘤内耐辐射亚区的剂量。

相似文献

1
Improving radiation conformality in the treatment of non-small cell lung cancer.
Semin Radiat Oncol. 2010 Jul;20(3):171-7. doi: 10.1016/j.semradonc.2010.01.005.
2
Image-guided radiation therapy for non-small cell lung cancer.
J Thorac Oncol. 2008 Feb;3(2):177-86. doi: 10.1097/JTO.0b013e3181622bdd.
6
Ga-68 MAA Perfusion 4D-PET/CT Scanning Allows for Functional Lung Avoidance Using Conformal Radiation Therapy Planning.
Technol Cancer Res Treat. 2016 Feb;15(1):114-21. doi: 10.1177/1533034614565534. Epub 2015 Jan 9.
8
Investigation of simple IMRT delivery techniques for non-small cell lung cancer patients with respiratory motion using 4DCT.
Med Dosim. 2009 Summer;34(2):158-69. doi: 10.1016/j.meddos.2008.07.001. Epub 2008 Aug 12.
9
Adaptive radiation for lung cancer.
J Oncol. 2011;2011. doi: 10.1155/2011/898391. Epub 2010 Aug 4.
10
Gating and tracking, 4D in thoracic tumours.
Cancer Radiother. 2010 Oct;14(6-7):446-54. doi: 10.1016/j.canrad.2010.06.002. Epub 2010 Jul 31.

引用本文的文献

2
Computed tomography patterns and clinical outcomes of radiation pneumonitis in non-small-cell lung cancer patients.
Acta Radiol Open. 2024 Oct 1;13(10):20584601241288502. doi: 10.1177/20584601241288502. eCollection 2024 Oct.
3
CT-guided iodine-125 brachytherapy as salvage therapy for recurrent mediastinal lymph node metastasis.
Thorac Cancer. 2021 May;12(10):1517-1524. doi: 10.1111/1759-7714.13932. Epub 2021 Mar 14.
5
Advances in proton therapy in lung cancer.
Ther Adv Respir Dis. 2018 Jan-Dec;12:1753466618783878. doi: 10.1177/1753466618783878.
6
Risk-adapted robotic stereotactic body radiation therapy for inoperable early-stage non-small-cell lung cancer.
Strahlenther Onkol. 2018 Feb;194(2):91-97. doi: 10.1007/s00066-017-1194-x. Epub 2017 Aug 15.
7
Upstaging, not just a non-small matter.
J Thorac Dis. 2017 Jun;9(6):E587-E590. doi: 10.21037/jtd.2017.05.64.
9
Intensity-modulated radiotherapy, not 3 dimensional conformal, is the preferred technique for treating locally advanced lung cancer.
Semin Radiat Oncol. 2015 Apr;25(2):110-6. doi: 10.1016/j.semradonc.2014.11.002. Epub 2014 Nov 15.
10
Local and systemic therapies for malignant pleural mesothelioma.
Curr Treat Options Oncol. 2014 Dec;15(4):683-99. doi: 10.1007/s11864-014-0314-4.

本文引用的文献

1
Toxicity and patterns of failure of adaptive/ablative proton therapy for early-stage, medically inoperable non-small cell lung cancer.
Int J Radiat Oncol Biol Phys. 2011 Aug 1;80(5):1350-7. doi: 10.1016/j.ijrobp.2010.04.049. Epub 2011 Jan 20.
3
Breathing interplay effects during proton beam scanning: simulation and statistical analysis.
Phys Med Biol. 2009 Jul 21;54(14):N283-94. doi: 10.1088/0031-9155/54/14/N01. Epub 2009 Jun 23.
5
Four-dimensional IMRT treatment planning using a DMLC motion-tracking algorithm.
Phys Med Biol. 2009 Jun 21;54(12):3821-35. doi: 10.1088/0031-9155/54/12/014. Epub 2009 May 28.
6
Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files.
Int J Radiat Oncol Biol Phys. 2009 May 1;74(1):297-303. doi: 10.1016/j.ijrobp.2008.12.041.
7
On the sensitivity of IMRT dose optimization to the mathematical form of a biological imaging-based prescription function.
Phys Med Biol. 2009 Mar 21;54(6):1483-501. doi: 10.1088/0031-9155/54/6/007. Epub 2009 Feb 13.
9
Stereotactic body radiation therapy in centrally and superiorly located stage I or isolated recurrent non-small-cell lung cancer.
Int J Radiat Oncol Biol Phys. 2008 Nov 15;72(4):967-71. doi: 10.1016/j.ijrobp.2008.08.001.
10
Effects of interfractional motion and anatomic changes on proton therapy dose distribution in lung cancer.
Int J Radiat Oncol Biol Phys. 2008 Dec 1;72(5):1385-95. doi: 10.1016/j.ijrobp.2008.03.007. Epub 2008 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验