Laboratory of Meteorology, Department of Physics, University of Ioannina, 451 10 Ioannina, Greece.
Environ Sci Pollut Res Int. 2011 Feb;18(2):316-27. doi: 10.1007/s11356-010-0375-2. Epub 2010 Jul 22.
In the present work, two types of artificial neural network (NN) models using the multilayer perceptron (MLP) and the radial basis function (RBF) techniques, as well as a model based on principal component regression analysis (PCRA), are employed to forecast hourly PM(10) concentrations in four urban areas (Larnaca, Limassol, Nicosia and Paphos) in Cyprus. The model development is based on a variety of meteorological and pollutant parameters corresponding to the 2-year period between July 2006 and June 2008, and the model evaluation is achieved through the use of a series of well-established evaluation instruments and methodologies. The evaluation reveals that the MLP NN models display the best forecasting performance with R (2) values ranging between 0.65 and 0.76, whereas the RBF NNs and the PCRA models reveal a rather weak performance with R (2) values between 0.37-0.43 and 0.33-0.38, respectively. The derived MLP models are also used to forecast Saharan dust episodes with remarkable success (probability of detection ranging between 0.68 and 0.71). On the whole, the analysis shows that the models introduced here could provide local authorities with reliable and precise predictions and alarms about air quality if used on an operational basis.
在本工作中,采用了两种类型的人工神经网络 (NN) 模型,分别是多层感知器 (MLP) 和径向基函数 (RBF) 技术,以及基于主成分回归分析 (PCRA) 的模型,用于预测塞浦路斯四个城市(拉纳卡、利马索尔、尼科西亚和帕福斯)的每小时 PM(10)浓度。模型开发基于 2006 年 7 月至 2008 年 6 月期间的两年内的各种气象和污染物参数,通过使用一系列成熟的评估工具和方法来进行模型评估。评估结果表明,MLP NN 模型的预测性能最佳,R(2) 值在 0.65 到 0.76 之间,而 RBF NNs 和 PCRA 模型的表现则相对较弱,R(2) 值分别在 0.37-0.43 和 0.33-0.38 之间。所得到的 MLP 模型也成功地用于预测撒哈拉尘埃事件(检测概率在 0.68 到 0.71 之间)。总的来说,分析表明,如果在业务基础上使用,这里介绍的模型可以为当地当局提供可靠和精确的空气质量预测和警报。