Suppr超能文献

脊髓脊膜膨出的小脑运动功能。

Cerebellar motor function in spina bifida meningomyelocele.

机构信息

Program in Neurosciences and Mental Health, Department of Psychology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.

出版信息

Cerebellum. 2010 Dec;9(4):484-98. doi: 10.1007/s12311-010-0191-8.

Abstract

Spina bifida meningomyelocele (SBM), a congenital neurodevelopmental disorder, involves dysmorphology of the cerebellum, and its most obvious manifestations are motor deficits. This paper reviews cerebellar neuropathology and motor function across several motor systems well studied in SBM in relation to current models of cerebellar motor and timing function. Children and adults with SBM have widespread motor deficits in trunk, upper limbs, eyes, and speech articulators that are broadly congruent with those observed in adults with cerebellar lesions. The structure and function of the cerebellum are correlated with a range of motor functions. While motor learning is generally preserved in SBM, those motor functions requiring predictive signals and precise calibration of the temporal features of movement are impaired, resulting in deficits in smooth movement coordination as well as in the classical cerebellar triad of dysmetria, ataxia, and dysarthria. That motor function in individuals with SBM is disordered in a manner phenotypically similar to that in adult cerebellar lesions, and appears to involve similar deficits in predictive cerebellar motor control, suggests that age-based cerebellar motor plasticity is limited in individuals with this neurodevelopmental disorder.

摘要

脊髓脊膜膨出(SBM)是一种先天性神经发育障碍,涉及小脑的畸形,其最明显的表现是运动功能缺陷。本文综述了 SBM 中几个运动系统的小脑神经病理学和运动功能,这些系统与当前的小脑运动和定时功能模型有关。SBM 患儿和成人在躯干、上肢、眼睛和言语发音器官方面存在广泛的运动缺陷,与成人小脑损伤观察到的缺陷大致一致。小脑的结构和功能与多种运动功能相关。虽然 SBM 中的运动学习通常得到保留,但那些需要预测信号和精确校准运动时间特征的运动功能受损,导致运动协调不流畅以及经典的小脑三联征(运动失调、共济失调和构音障碍)受损。SBM 个体的运动功能表现出与成人小脑损伤相似的紊乱方式,并且似乎涉及到类似的预测性小脑运动控制缺陷,这表明该神经发育障碍患者的基于年龄的小脑运动可塑性是有限的。

相似文献

1
Cerebellar motor function in spina bifida meningomyelocele.
Cerebellum. 2010 Dec;9(4):484-98. doi: 10.1007/s12311-010-0191-8.
3
Upper limb motor function in young adults with spina bifida and hydrocephalus.
Childs Nerv Syst. 2009 Nov;25(11):1447-53. doi: 10.1007/s00381-009-0948-x. Epub 2009 Aug 12.
4
Anomalous development of brain structure and function in spina bifida myelomeningocele.
Dev Disabil Res Rev. 2010;16(1):23-30. doi: 10.1002/ddrr.88.
5
Motor learning in children with spina bifida: intact learning and performance on a ballistic task.
J Int Neuropsychol Soc. 2006 Sep;12(5):598-608. doi: 10.1017/S1355617706060772.
6
Neurobiology of perceptual and motor timing in children with spina bifida in relation to cerebellar volume.
Brain. 2004 Jun;127(Pt 6):1292-301. doi: 10.1093/brain/awh154. Epub 2004 Apr 6.
9
Neuromotor speech deficits in children and adults with spina bifida and hydrocephalus.
Brain Lang. 2002 Mar;80(3):592-602. doi: 10.1006/brln.2001.2620.

引用本文的文献

1
Electrophysiological Study in the Right Upper and Lower Limbs in Infants with Lumbosacral Meningomyelocele and in Normal Infants: A Case-control Study.
Int J Appl Basic Med Res. 2023 Apr-Jun;13(2):77-82. doi: 10.4103/ijabmr.ijabmr_484_22. Epub 2023 Jul 17.
2
Long-Term Imaging Follow-up from the Management of Myelomeningocele Study.
AJNR Am J Neuroradiol. 2023 Jul;44(7):861-866. doi: 10.3174/ajnr.A7926. Epub 2023 Jun 29.
3
Cerebral Abnormalities in Spina Bifida: A Neuropathological Study.
Pediatr Dev Pathol. 2022 Mar-Apr;25(2):107-123. doi: 10.1177/10935266211040500. Epub 2021 Oct 6.
4
Neurobehavioural changes and morphological study of cerebellar purkinje cells in kaolin induced hydrocephalus.
Anat Sci Int. 2021 Jan;96(1):87-96. doi: 10.1007/s12565-020-00561-z. Epub 2020 Aug 13.
5
Long-Term Intellectual and Fine Motor Outcomes in Spina Bifida Are Related to Myelomeningocele Repair and Shunt Intervention History.
J Int Neuropsychol Soc. 2020 Apr;26(4):364-371. doi: 10.1017/S1355617719001176. Epub 2019 Nov 15.
6
Correlation Between Neurologic Impairment Grade and Ambulation Status in the Adult Spina Bifida Population.
Am J Phys Med Rehabil. 2019 Dec;98(12):1045-1050. doi: 10.1097/PHM.0000000000001188.
7
Spina bifida.
Nat Rev Dis Primers. 2015 Apr 30;1:15007. doi: 10.1038/nrdp.2015.7.
9
Functional plasticity in childhood brain disorders: when, what, how, and whom to assess.
Neuropsychol Rev. 2014 Dec;24(4):389-408. doi: 10.1007/s11065-014-9261-x. Epub 2014 May 13.
10
Covert orienting in three etiologies of congenital hydrocephalus: the effect of midbrain and posterior fossa dysmorphology.
J Int Neuropsychol Soc. 2014 Mar;20(3):268-277. doi: 10.1017/S1355617713001501. Epub 2014 Feb 17.

本文引用的文献

1
Timing functions of the cerebellum.
J Cogn Neurosci. 1989 Spring;1(2):136-52. doi: 10.1162/jocn.1989.1.2.136.
2
Internal models in the cerebellum.
Trends Cogn Sci. 1998 Sep 1;2(9):338-47. doi: 10.1016/s1364-6613(98)01221-2.
3
Prediction, cognition and the brain.
Front Hum Neurosci. 2010 Mar 22;4:25. doi: 10.3389/fnhum.2010.00025. eCollection 2010.
4
The cognitive phenotype of spina bifida meningomyelocele.
Dev Disabil Res Rev. 2010;16(1):31-9. doi: 10.1002/ddrr.89.
5
Anomalous development of brain structure and function in spina bifida myelomeningocele.
Dev Disabil Res Rev. 2010;16(1):23-30. doi: 10.1002/ddrr.88.
6
Neuropathology and structural changes in hydrocephalus.
Dev Disabil Res Rev. 2010;16(1):16-22. doi: 10.1002/ddrr.94.
7
The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations.
Nat Rev Neurosci. 2010 Apr;11(4):264-74. doi: 10.1038/nrn2805. Epub 2010 Mar 10.
8
Two views of brain function.
Trends Cogn Sci. 2010 Apr;14(4):180-90. doi: 10.1016/j.tics.2010.01.008. Epub 2010 Mar 4.
9
Dynamic changes in the cortico-subcortical network during early motor learning.
NeuroRehabilitation. 2010;26(2):95-103. doi: 10.3233/NRE-2010-0540.
10
Reduced anisotropy in the middle cerebellar peduncle in Chiari-II malformation.
Cerebellum. 2010 Sep;9(3):303-9. doi: 10.1007/s12311-010-0162-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验