Grupo de Neurodegeneración y Neuroreparación, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.
Brain Pathol. 2011 Jan;21(1):1-15. doi: 10.1111/j.1750-3639.2010.00417.x.
Excitotoxicity is a widely studied mechanism underlying motoneuron degeneration in amyotrophic lateral sclerosis (ALS). Synaptic alterations that produce an imbalance in the ratio of inhibitory/excitatory synapses are expected to promote or protect against motoneuron excitotoxicity. In ALS patients, motoneurons suffer a reduction in their synaptic coverage, as in the transition from the presymptomatic (2-month-old) to early-symptomatic (3-month-old) stage of the hSOD1(G93A) mouse model of familial ALS. Net synapse loss resulted from inhibitory bouton loss and excitatory synapse gain. Furthermore, in 3-month-old transgenic mice, remaining inhibitory but not excitatory boutons attached to motoneurons showed reduction in the active zone length and in the spatial density of synaptic vesicles in the releasable pool near the active zone. Bouton degeneration/loss seems to be mediated by bouton vacuolization and by mechanical displacement due to swelling vacuolated dendrites. In addition, chronic treatment with a nitric oxide (NO) synthase inhibitor avoided inhibitory loss but not excitatory gain. These results indicate that NO mediates inhibitory loss occurring from the pre- to early-symptomatic stage of hSOD1(G93A) mice. This work contributes new insights on ALS pathogenesis, recognizing synaptic re-arrangement onto motoneurons as a mechanism favoring disease progression rather than as a protective homeostatic response against excitotoxic events.
兴奋性毒性是肌萎缩侧索硬化症(ALS)中运动神经元退化的一个广泛研究的机制。突触改变导致抑制性/兴奋性突触比例失衡,预计会促进或保护运动神经元免受兴奋性毒性的影响。在 ALS 患者中,运动神经元的突触覆盖面积减少,如在家族性 ALS 的 hSOD1(G93A)小鼠模型的从无症状前(2 月龄)到早期症状(3 月龄)阶段的过渡中。净突触损失是由于抑制性末梢丧失和兴奋性突触增加所致。此外,在 3 月龄转基因小鼠中,仍然附着在运动神经元上的抑制性但非兴奋性末梢显示出活性区长度和靠近活性区的可释放池中突触小泡的空间密度减少。末梢退化/丧失似乎是由末梢空泡化和肿胀空泡化树突的机械移位介导的。此外,慢性给予一氧化氮(NO)合酶抑制剂可避免抑制性丧失,但不能避免兴奋性增加。这些结果表明,NO 介导了 hSOD1(G93A)小鼠从无症状前到早期症状阶段的抑制性丧失。这项工作为 ALS 的发病机制提供了新的见解,认识到突触重新排列到运动神经元上是一种促进疾病进展的机制,而不是对兴奋性事件的保护性体内平衡反应。